Non-perturbative topological stry theary on compact Calab:-Yau manifolds
w/ Jie Con, Albsecht Klemm, Mares Marino Moutpellier, $27 / 10 / 2023$

One slide summary of talk
Topological string Peary start out life as a worldsheet theory, just like sting theory proper

$$
F_{\text {top }}^{(0)}=\sum_{s=0}^{\infty} F_{g} g_{s}^{2} g^{-2}
$$

- intrinsically perturbative definition of Flop
- Ts grow factorially $\rightarrow F_{t_{p}}$ diverge factorially

Without providing non-perturbative definition of they, we will compute correction to $F_{\text {top }}^{(0)}$ of the form

$$
e^{-l d / g_{s}} \sum_{k=0}^{\infty} F_{k}^{(l)} g_{s}^{k-1}
$$

One slide sumuna of talk:
Peplogical strij therg starts life as a worldsheet Heary, just like otring theny proper

$$
F=\sum_{j=0}^{\infty} F_{g} g_{s}^{2 j^{2}}
$$

- intrinnically perterbative deffinition
- Fs grow factorially $\rightarrow F$ divere factomially
without providing a con-perturbative defurition of Reary, we will compube correction) $e^{-l d / g s} \sum_{k=0}^{\infty} F_{k}^{(l)} g_{s}^{k-1}$
exactly exactly.

Structure of talle

1. Review of topoloyical striys
2. Revicu of resurgence
3. Computing instanton corectirn to $F_{10 \mathrm{p}}$
4. Experimental evidence
5. Review of topological strings

Revicu of topological strings
Type II etrings on $\mathbb{R}^{1 / 3} \times$ Calabi-Yau

Revicu of topological strings
Type II etrings on $\mathbb{R}^{1 / 3} \times$ Calabi-Yau
distingnished class of 3 cple div'l uflds M

Revicu of topological strings
Type II etrings on $\mathbb{R}^{1 / 3} \times$ Calabi-Yau
$\Rightarrow 4 d$ theay with $N=2$ supesymmetry

Revicu of topological strings
Type II etrings on $\mathbb{R}^{1 / 3} \times$ Calabi-Yau
$\Rightarrow 4 d$ theay with $N=2$ supesymmetry

Woldskeet theary \supset 2d $N=(2,2)$ theay

Revicu of topological strings
Type II etrings on $\mathbb{R}^{1.3} \times$ Calabi-Yau
$\Rightarrow 4 d$ theay with $N=2$ supesymmetry

Woldskeet theary \supset 2d $N=(2,2)$ theay

$$
\begin{aligned}
& \qquad \rightarrow C_{Y} \\
& \downarrow \text { twisty }
\end{aligned}
$$ topological stry theary

Revicu of topological strings
Observables of topolozical strijg theary:
partition fon F_{g}

$$
\uparrow
$$

genns of worldsheet

Revicu of topological strings
Observables of topological string theory:
partition fan F_{g}

$$
\uparrow
$$

genus of worldsheet
Fo dives not depend on moduli of Riemann surface \rightarrow the moduli space $\mathcal{H}_{\mathcal{\prime}}$ is integrated over.

The B-model

The F_{g} are $f \mathrm{chs}_{s}$ on the complex chructure moduli space $M_{\text {calx }}$ of M.

Eg. $\quad X=\left\{p\left(x_{1}, \ldots, x_{5}\right)=0\right\} \subset \mathbb{p}^{4}$
$\tau_{\text {polynomial : coefficients }} z_{i}$ determine calx structure

$$
\rightarrow \quad F_{g}\left(z_{i}\right)
$$

Why is the tropolaical string interesting?

- Computable subsectar of string Peary
- Computes terns in effective $4 d$ action of Calabi- Yon compactifications
- Counts BPS particles

Why is the tropolaical string interesting?

- Computable subsectar of string Peary \uparrow all germs results, non-perturbative resits
- Computes terms in effective $4 d$ action of Calabi- Yon compactifications
- Counts BPS particles

Why is the tropolaical string interesting?

- Computable subsectar of string Peary \uparrow all germs results, non-perturbative resits
- Computes terms in effective $4 d$ action of Calabi- Yon compactifications \uparrow important of. in blackkle plyysies
$Z_{\text {: }}$ map to $V E V_{s}$ of scalars
- Counts BPS particles

Why is the tropolaical string interesting?

- Computable subsector of string Peary \uparrow all germs results, non-perturbative resits
- Computes terms in effective $4 d$ action of Calabi - Yon compactifications \uparrow important of. in blackkle plyysies
z Z map to $V E V$ s of scalars
- Counts BPS particles \uparrow enumerative geometry

Why is the tropolaical sting interesting?

- Computes terns in effective $4 d$ action of Calabi- Yon compactifications \uparrow important of. in blackkle plyysies z : map to $V E V$ s of scalars

Distinuished ponts on moduli space

- Computes terms in effective 4 d action of Calabi-Yan compactifications \uparrow important og. in blackhole plysics
Z : map to $V E V_{S}$ of scalars

Myple of one-parameter models

Distinuished ponts on moduli space

- Computes terms in effective $4 d$ action of Calabi- Yan compactifrications \uparrow impertant of. in blackhole plysics
Z : map to VEVs of scalars

Mcple of one-parameter nodels

Distinuished points on moduli space

- Computes terms in effective $4 d$ action of Calabi - Yan compactifications \uparrow impertant of. in blackhole plysics
Z : map to VEVs of scalars

Mcple of one-parameter nodels

Distinguished points on moduli space

- Computes terms in effective $4 d$ action of Calabi - Yon compactifications \uparrow important of. in blackhole physics
$Z_{\text {: }}$ map to $V E V_{s}$ of scalars

Maple of one-parameter models

Special geometry I
Extracting physics/ enumerative information from F_{g} requires exprosmy them λ terms of special coordinates: by CY property $\underset{\hat{i}}{H^{3,0}(M)=\langle\Omega\rangle}$

Wally $\Omega=Q_{i j k} x^{i} x^{j} x^{k}$
Let $\left\{A_{0}, \ldots, A_{n}, B^{0} \ldots, B^{n}\right\}$ be a basis of $H_{3}(M, \mathbb{Z})$

$$
\Pi=\left(\begin{array}{c}
s \\
B^{0} \\
\vdots \\
\int_{B^{n}} \Omega \\
\int_{A_{0}} \Omega \\
\vdots \\
\int_{A_{n}} \Omega
\end{array}\right)=\left(\begin{array}{c}
P_{0} \\
\vdots \\
P_{n} \\
x_{0} \\
\vdots \\
x^{n}
\end{array}\right) \quad \begin{array}{r}
\text { period } \\
\text { vector }
\end{array}
$$

Special geometry I

Computable as power series (+logarithms) solutions of differential equations anywhere on moduli space.

$$
\Pi=\left(\begin{array}{c}
s \\
B^{\circ} \\
\vdots \\
\int_{B^{n}} \Omega \\
\int_{A_{0}} \Omega \\
\vdots \\
\rho_{A_{n}} e^{2}
\end{array}\right)=\left(\begin{array}{c}
P_{0} \\
\vdots \\
P_{n} \\
x_{0} \\
\vdots \\
x^{n}
\end{array}\right) \quad \begin{gathered}
\text { period } \\
\text { vector }
\end{gathered}
$$

Special geometry II

$$
\Pi=\left(\begin{array}{c}
s \\
B^{0} \\
\vdots \\
S_{B^{n}} \Omega \\
\int_{A_{0}} \Omega \\
\vdots \\
\int_{A_{n}} \Omega
\end{array}\right)=\left(\begin{array}{c}
P_{0} \\
\vdots \\
P_{n} \\
x_{0} \\
\vdots \\
x^{n}
\end{array}\right) \quad \begin{aligned}
& \text { period } \\
& \text { vector }
\end{aligned}
$$

Locally, the XI furnish projective coordinates on $M_{c p l x}$

$$
z \longmapsto\left(X^{0}(z): \ldots: X^{n}(z)\right) \in \mathbb{P}^{n+1}
$$

Affine coordinates $\quad t^{i}(z):=X^{i}(z) / X^{0}(z)$

Special geometry III
A distinguished metic on Maple is induced by the Käbler form K defined via

$$
e^{-k}=i \int \Omega \cdot \bar{Q}
$$

Note that K is not a holomorphic os of z.

The holomorphic anomaly equations I

- The twisting procedure render ant-holomaghic dependence of $F_{g} Q$-exact
\rightarrow Fo pics up \bar{z} dependence only from ∂M_{g}
\rightarrow sources of \bar{z} dependence

The holomorplric anomaly equations I
\rightarrow soures of \bar{z} defendence

The holomorphic anomaly equations II
\rightarrow sources of \bar{z} dependence

for $g \geq 2$

The holomorphic anomaly equations II
\rightarrow sources of \bar{z} dependence

$$
\partial_{z} F_{g}=\frac{1}{2} C_{i}^{z 2}\left(D_{z} D_{z} F_{g-1}+\sum_{h=1}^{g-1} \partial_{z} F_{g-n} \partial_{z} F_{h}\right)
$$

for $g \geq 2$ special geometry data determined \sim terms of periods

The holomorphic anomaly equations II
\rightarrow sources of \bar{z} dependence

$$
\partial_{i} F_{g}=\frac{1}{2} C_{i}^{2 z}\left(D_{z} \partial_{z} F_{g-1}+\sum_{h=1}^{g-1} \partial_{z} F_{g-n} \partial_{z} F_{h}\right)
$$

for $g \geq 2$
\Rightarrow recursion relation for F_{g} up to purely holomorphic piece: $\overline{F_{g}}+f_{g}(z)$

The holomorphic anomaly equations III
The HAE imply the follows structure theoven for the F_{g} : all non-holomorphic dependence is captured by a finite set of generators:

$$
\left\{s^{i k}, S^{k}, \delta, K\right\}
$$

propagators
where

$$
\begin{gathered}
\partial_{i} \delta j k=C_{i}^{j k}, \partial_{j} \delta^{k}=G_{i j} \delta^{i k} \\
\partial_{j} S=G_{i j} S^{i}
\end{gathered}
$$

The holomorphic anomaly equations IV

$$
\partial_{i} F_{g}=\frac{1}{2} C_{i}^{j k}\left(D_{j} \partial_{k} F_{g-1}+\sum_{n=1}^{g-1} \partial_{j} F_{g-n} \partial_{k} F_{n}\right)
$$

becomes

$$
\frac{\partial F_{g}}{\partial S^{i j}}=\frac{1}{2} D_{i} D_{j} F_{g-1}+\frac{1}{2} \sum_{h=1}^{g-1} D_{i} F_{h} D_{j} F_{g-h}, \quad \frac{\partial F_{g}}{\partial K_{i}}+S^{i} \frac{\partial F_{g}}{\partial S}+S^{i j} \frac{\partial F_{g}}{\partial S^{j}}=0
$$

Explicit form of F_{2} for 1-parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

Explicit form of F_{2} for 1 -parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

Euler characteristic of \tilde{M} (the minor to M)

Explicit form of F_{2} for 1 -parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

Special geometry data

Explicit form of F_{2} for 1 -parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

Propagates: auholomorphic objects
(K_{i} dependence absobed in $\tilde{S}, \tilde{S}^{\prime}$)

Explicit form of F_{2} for 1 -parameter rodel

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

holomarphic ambiju'tios of propagatos

Explicit form of F_{2} for 1 -parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

holomorphic ambiguity

Explicit form of F_{2} for 1 -parameter model

$$
\begin{aligned}
F_{2} & =\frac{5}{24} C_{111}^{2}\left(S^{11}\right)^{3}+\frac{1}{8}\left(\partial_{1} C_{111}-3 C_{111} q_{11}^{1}+4 C_{111} f_{1}^{(1)}\right)\left(S^{11}\right)^{2} \\
& +\left(\frac{1}{4} q_{1}^{11} C_{111}+\frac{1}{2} \partial_{1} f_{1}^{(1)}+\frac{1}{2} f_{1}^{(1)}\left(f_{1}^{(1)}-q_{11}^{1}\right)+\frac{1}{2}\left(1-\frac{\chi}{24}\right) q_{11}\right) S^{11} \\
& +\frac{\chi}{48}\left(C_{111} S^{11}+2 f_{1}^{(1)}\right) \tilde{S}^{1}+\frac{\chi}{24}\left(\frac{\chi}{24}-1\right) \tilde{S}+f_{2}(z) .
\end{aligned}
$$

This expression is valid everywhere on $M_{\text {call }}$!

In a moment, we will rewrite the holomorphic anomaly equation in terms of $F^{(0)}=\sum \operatorname{Fg}_{3}^{2} J^{-2}$,
but first...

Back to physics: the holomaphic limit I
To describe physics in vicinity of $z^{*} \in M_{c p l}$ requires choice of frame

1. Adapted choice of A-periods X^{I} to yield local coordinates $z_{i} \longrightarrow X^{i} / X^{0}$
2. Specialization $\bar{z} \underset{\hat{i}}{\longrightarrow} \overline{z^{*}}$
holomaphic limit

Back to physics: he holomaphic limit I
2. Specialization $\bar{z} \underset{\uparrow}{\longrightarrow} \overline{z^{*}}$
holomorphic limit

Back fo physics: he holomorphic limit II
2. Specialization

holomorphic limit
un practice,

$$
\begin{gathered}
\mathcal{S}^{z z}=-\frac{1}{C}\left(\frac{w_{0,2}}{w_{0,1}}-q_{z z}^{z}\right), \quad \tilde{\mathcal{S}}^{z}=-\frac{1}{C}\left(\frac{w_{1,2}}{w_{0,1}}-q_{z z}\right) \\
\tilde{\mathcal{S}}=-\frac{1}{2 C}\left(\frac{w_{1,3}}{w_{0,1}}-\partial_{z} q_{z z}-q_{z z} q_{z z}^{z}\right)+\frac{\partial_{z} C}{2 C^{2}}\left(\frac{w_{1,2}}{w_{0,1}}-q_{z z}\right)-\frac{q_{z}^{z}}{2} .
\end{gathered}
$$

where $\quad w_{i, j}=\partial_{z}^{j} X_{*}^{0} \partial_{z}^{i} X_{*}^{1}-\partial_{z}^{i} X_{*}^{0} \partial_{z}^{j} X_{*}^{1}$,

Back to physics: he holomaphic limit II

$$
F_{g} \longrightarrow F_{g}
$$

Fact: $F_{\partial}\left(x^{0}, x^{1}, \ldots, x^{n}\right)$ is homogeneous of degree $2-2 y$, ie.

$$
F_{g}\left(x^{0}, x^{1}, \ldots, x^{n}\right)=\left(x^{0}\right)^{2-2 g} \mathcal{F}_{g}\left(1, x^{1} / x^{0}, \ldots, x^{n} / x^{0}\right)
$$

Getting on hands dirty i the bear frame I
All genus structural results exist in TeCH frame close to MUM point.

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{\substack{k \geq 1 \\ \tau_{\text {mimas to }} M}} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Gopakunar - Vofa form of

$$
F^{(0)}(X)=\sum_{g=0}^{\infty} F_{g}\left(X^{0}, \ldots, X^{n}\right) g_{s}^{2-2}
$$

$$
\begin{gathered}
\text { gums } 0 \text { and } 1 \\
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
\end{gathered}
$$

Getting on hands dirty i the bear l frame II
special to
GV invariants genus 0 and 1
\rightarrow integer enumerative invaciourts asocinted to cave class β

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Getting on hands dirty i the bear frame II
special to
GV invariants genus 0 and 1
\rightarrow integer enumerative invoriourts asocinted to cave class β

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Getting on hands dirty i the bear frame II
special to genes 0 and 1

GV invariants
\rightarrow integer enumerative invariants asocinted to curve class β

$$
\begin{array}{r}
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k} \\
e^{i \beta_{i} t^{i}} \uparrow \prod_{x^{i} / x^{0}}
\end{array}
$$

Getting on hands dirty i the bear frame II
special to genes 0 and 1

GV invariants
\rightarrow integer enumerative invariants asocinted to cave class β

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\tilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Getting ow hands dirty i the bear frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of $F g$ by expanding \sin.

Getting ow hands dirty i the bear frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of $F g$ by expanding \sin.

Getting our hands dirty is the bear frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of F_{g} by expanding \sin.

$$
\sin ^{-2} x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{4(2 n-1) B_{2 n}(2 x)^{2 n-2}}{(2 n)!}, \quad \sin ^{2} x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{2 n}}{2(2 n)!}
$$

Getting on hands dirty i the beast frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of $F g$ by expanding \sin.

$$
\begin{array}{r}
\sin ^{-2} x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{4(2 n-1) B_{2 n}(2 x)^{2 n-2}}{(2 n)!}, \quad \sin ^{2} x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{2 n}}{2(2 n)!} \\
\text { Bernoulli numbers } \quad B_{2 n}=(2 n)!\frac{2(-1)^{n-1}}{(2 \pi)^{2 n}} \sum(2 n)
\end{array}
$$

Getting on hands dirty i the beast frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of $F g$ by expanding \sin.

$$
\begin{array}{r}
\sin ^{-2} x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{4(2 n-1) B_{2 n}(2 x)^{2 n-2}}{(2 n)!}, \quad \sin ^{2} x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{2 n}}{2(2 n)!} \\
\text { Bernoulli numbers } \quad B_{2 n}=(2 n)!\frac{2(-1)^{n-1}}{(2 \pi)^{2 n}} \sum(2 n)
\end{array}
$$

Getting on hands dirty is the bear frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of F_{g} by expanding sin.

$$
\begin{array}{r}
\sin ^{-2} x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{4(2 n-1) B_{2 n}(2 x)^{2 n-2}}{(2 n)!}, \quad \sin ^{2} x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{2 n}}{2(2 n)!} \\
\text { Bernoulli numbers } \quad B_{2 n}=(2 n)!\frac{2(-1)^{n-1}}{(2 \pi)^{2 n}} \sum(2 n) \\
\left(\frac{\lambda}{g_{s}}\right)^{2-2 g} \mathcal{F}_{g}(X)=\sum_{\beta \in H_{2}(M, \mathbb{Z})}\left((-1)^{g+1} \frac{(2 g-1) B_{2 g}}{(2 g)!} n_{0, \beta}+\frac{2(-1)^{g} n_{2, \beta}}{(2 g-2)!}+\cdots\right) \operatorname{Li}_{3-2 g}\left(Q_{\beta}\right) \\
\sum_{n=1}^{\infty} \frac{\mathbb{Q}_{\beta}^{n}}{n^{3-2 \jmath}}
\end{array}
$$

Getting on hands dirty i the bear frame III

$$
\mathcal{F}^{(0)}(X)=\frac{c(t)}{\lambda^{2}}+l(t)+\sum_{g \geq 0} \sum_{\beta \in H_{2}(\widetilde{M}, \mathbb{Z})} \sum_{k \geq 1} \frac{n_{g, \beta}}{k}\left(2 \sin \frac{k \lambda}{2}\right)^{2 g-2} Q_{\beta}^{k}
$$

Asymptotic of $F g$ by expanding \sin.

$$
\begin{array}{r}
\sin ^{-2} x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{4(2 n-1) B_{2 n}(2 x)^{2 n-2}}{n(2 n)!}, \quad \sin ^{2} x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(2 x)^{2 n}}{2(2 n)!} \\
\text { Bernoulli numbers } B_{2 n}=(2 n)!\frac{2(-1)^{n-1}}{(2 \pi)^{2 n}} \sum(2 n) \\
\left(\frac{\lambda}{g_{s}}\right)^{2-2 g} \mathcal{F}_{g}(X)=\sum_{\beta \in H_{2}(M, \mathbb{Z})}\left((-1)^{g+1} \frac{(2 g-1) B_{2 g}}{(2 g)!} n_{0, \beta}+\frac{2(-1)^{g} n_{2, \beta}}{(2 g-2)!}+\cdots\right) \operatorname{Li}_{3-2 g}\left(Q_{\beta}\right) \\
2^{\text {ul }} \text { source of factorials } \longrightarrow \sum_{n=1}^{\infty} \frac{\mathbb{Q}_{\beta}^{n}}{n^{3-2 j}}
\end{array}
$$

Getting our hands dirty is the bear frame III

$$
\left(\frac{\lambda}{g_{s}}\right)^{2-2 g} \mathcal{F}_{g}(X)=\sum_{B \in H_{2}(\widetilde{\mathbb{M}}, \mathbb{Z})}\left((-1)^{g+1} \frac{(2 g-1) B_{2 g}}{(2 g)!} n_{0, \beta}+\frac{2(-1)^{g} n_{2, \beta}}{(2 g-2)!}+\cdots\right) \operatorname{Li}_{3-2 g}\left(Q_{\beta}\right)
$$

Getting on hands dirty i the beaM frame IV

$$
\left(\frac{\lambda}{g_{s}}\right)^{2-2 g} \mathcal{F}_{g}(X)=\sum_{B \in H_{2}(\tilde{M}, \mathbb{Z})}\left((-1)^{g+1} \frac{(2 g-1) B_{2 g}}{(2 g)!} n_{0, \beta}+\frac{2(-1)^{g} n_{2, \beta}}{(2 g-2)!}+\cdots\right) \operatorname{Li}_{3-2 g}\left(Q_{\beta}\right)
$$

Getting on hands dirty i the buM frame IV

$$
\left(\frac{\lambda}{g_{s}}\right)^{2-2 g} \mathcal{F}_{g}(X)=\sum_{B \in H_{2}(\tilde{M}, \mathbb{Z})}\left((-1)^{g+1} \frac{(2 g-1) B_{2 g}}{(2 g)!} n_{0, \beta}+\frac{2(-1)^{g} n_{2, \beta}}{(2 g-2)!}+\cdots\right) \operatorname{Li}_{3-2 g}\left(Q_{\beta}\right)
$$

\& Euler characteristic of M
At $\beta=0$, with $n_{0,0}=X / 2$ and $L_{i_{3-2 g}}(1)=\sum(3-2 g)$

$$
\begin{gathered}
=B_{2 g-2 / 2 g-2} \\
F_{g}(X) \sim-\frac{x}{2 \pi^{2}}\left(1+\frac{1}{2 g-2}\right)\left(\begin{array}{c}
\hat{\uparrow}\left(x^{0}\right)^{2-2 g} \Gamma(2 g-1) \\
\text { normalization } \\
\text { constant }
\end{array}\right.
\end{gathered}
$$

We can get similar result for $\beta \neq 0$ $\left(x \rightarrow n_{0, \beta}\right)$, and also at comifold in conifold fame, but let's get back to the holomorphic anomaly!

The holornorphic anomaly equation for $F^{(0)}$
As F_{0} and F_{1} are special, introduce

$$
\begin{aligned}
& \widetilde{F}^{(0)}=F^{(0)}-g_{s}^{-2} F_{0}=\sum_{g \geq 1} F_{g} g_{s}^{2 g-2} \quad \text { and } \widehat{F}^{(0)}=\widetilde{F}^{(0)}-F_{1}=\sum_{g \geq 2} F_{g} g_{s}^{2 g-2} \\
& \Longrightarrow \\
& \frac{\partial \widehat{F}^{(0)}}{\partial S^{i j}}-\frac{1}{2} K_{i} \frac{\partial \widehat{F}^{(0)}}{\partial \tilde{S}^{j}}-\frac{1}{2} K_{j} \frac{\partial \widehat{F}^{(0)}}{\partial \tilde{S}^{i}}+\frac{1}{2} \frac{\partial \widehat{F}^{(0)}}{\partial \tilde{S}} K_{i} K_{j}=\frac{g_{s}^{2}}{2} \hat{D}_{i} \hat{D}_{j} \widetilde{F}^{(0)}+\frac{g_{s}^{2}}{2} \hat{D}_{i} \widetilde{F}^{(0)} \hat{D}_{j} \widetilde{F}^{(0)} \\
& \frac{\partial \widehat{F}^{(0)}}{\partial K_{i}}=0
\end{aligned}
$$

Idea:
Forget perturbative roots of this equation!

$$
\begin{aligned}
& \frac{\partial \widehat{F}^{\text {(明 }}}{\partial K_{i}}=0 .
\end{aligned}
$$

OK
Now what?
2. Revicu of resugence

Resurence
How to extract non-perturbative informater from a farmal pover ceries?

Bored resummation I
Courider a factorially divergent series

$$
{\underset{\uparrow}{\uparrow}}_{\varphi(z)=\sum a_{n} z^{n}, \quad a_{n} \sim n!~}^{\sim}
$$

formal power series
unprove convergence by couridering Barrel transform

$$
\hat{\varphi}(\zeta)=\sum \frac{a_{n}}{n!} \zeta^{n}
$$

If $\hat{\varphi}(\Sigma)$ exists around the onfin and can be analytically continued to the complex \sum-plane $\rightarrow \varphi$ is a resurgent for "Bevel Blame

Botel resummation II
Relevance of $\hat{\varphi}(\xi)=\sum \frac{a_{n}}{n!} \varepsilon^{n}$?
Consider its Laplace transform

$$
\begin{aligned}
\int_{0}^{\infty} \hat{\varphi}(\xi z) e^{-\xi} d \zeta & \\
& \int_{0}^{\infty} \frac{a_{n}}{n!}(\xi z)^{n} e^{-\xi} d \xi \\
& =\sum a_{n} z^{n} \frac{1}{n!} \int_{0}^{\infty} \xi^{n} e^{-\xi} d \xi \\
& =\varphi(z)
\end{aligned}
$$

Borel resummation II

If Laplace transform exists,

$$
\int_{0}^{\infty} \hat{\varphi}(\zeta z) e^{-\xi} d \xi \sim \sum a_{n} z^{n}
$$

asymptotic expansion
Tenminoly y

$$
s(\varphi)(z)=\int_{0}^{\infty} \hat{\varphi}(\xi z) e^{-\xi} d \xi
$$

is the Borel resummation of the formal paver serics φ.

What can 88 wry?

$$
\begin{aligned}
s(\varphi)(z) & =\int_{0}^{\infty} \hat{\varphi}(\xi z) e^{-\xi} d \xi \\
& =\frac{1}{z} \int_{\operatorname{tav} z} \hat{\varphi}(\xi) e^{-\xi / z} d \xi
\end{aligned}
$$

What can so urey?

$$
\begin{aligned}
s(\varphi)(z) & =\int_{0}^{\infty} \hat{\varphi}(\xi z) e^{-\xi} d \xi \\
& =\frac{1}{z} \int \hat{\varphi}(\xi) e^{-\xi / z} d \xi \\
& t \operatorname{ajz} z
\end{aligned}
$$

If $\hat{\varphi}(\xi)$ has a singularity on integration path,

What can so urey?

$$
\begin{aligned}
s(\varphi)(z) & =\int_{0}^{\infty} \hat{\varphi}(\xi z) e^{-\xi} d \xi \\
& \left.=\frac{1}{z} \int_{\operatorname{taj} z}^{\infty} \hat{\varphi}(\xi) \right\rvert\, e^{-\xi / z} d \xi
\end{aligned}
$$

If $\hat{\varphi}(\xi)$ has a singularity on integration path, integral is ill defined.

Lateral Bored resummation

$$
\left.s(\varphi)(z)=\frac{1}{z} \int_{\substack{\text { or z }}}^{\int \hat{\varphi}(\xi)} \right\rvert\, e^{-\xi / z} d \xi
$$

If $\hat{\varphi}(\zeta)$ has a siyulaitly on integration path, integral is ill defined.

Lateral Borel resummation

$$
s^{ \pm}(\varphi)(z)=\frac{1}{z} \int \hat{\varphi}(\xi) e^{-\xi / z} d \xi
$$

Integrate above or below singularily:

$$
\begin{aligned}
& s+(\varphi)(z) \\
& \sim \varphi(\varphi)(z) \\
& \sim \varphi(z) \\
& s+(\varphi)(z)-s^{-}(\varphi)(z) \sim 0 \text { og. } e^{-1 / z}
\end{aligned}
$$

Simularitics in the Bored plane I
Let $\&$ be indexing set of singular points S, ie.

$$
S=\left\{\sum_{0} \mid \omega \in \Omega\right\}
$$

Common case: logarithmic singularity at Sw
stokes constant

$$
\hat{\varphi}\left(\xi_{\omega}+\xi\right)=-\frac{S_{\omega}^{k}}{2 \pi} \log (\xi) \hat{\varphi}_{\omega}(\xi)+\text { regular }
$$

$\hat{\varphi}_{\omega}(\xi)=\sum_{n=0}^{\infty} \hat{C}_{n} \xi^{n}$ has finite radius of convergence

Simularitis in the Borel plave II

$$
\begin{aligned}
& \hat{\varphi}\left(\xi_{\omega}+\xi\right)=-\frac{S_{\omega}}{2 \pi} \log (\xi) \hat{\varphi}_{\omega}(\xi)+\text { rgular } \\
& S_{+}(\varphi)(z)-S_{-}(\varphi)(z)=\int \hat{\varphi}(\xi) e^{-\xi / z} d \xi
\end{aligned}
$$

$$
=i S_{\omega} e^{-\delta_{\omega} / z} S_{-}\left(\varphi_{\omega}\right)(z)
$$

\uparrow exponentially suppressed

Simularitiss in the Borel plave III

$$
\begin{aligned}
& S_{+}(\varphi)(z)-S_{-}(\varphi)(z)=i S_{\omega} e^{-S_{\omega} / z} S_{-}\left(\varphi_{\omega}\right)(z) \\
& \Rightarrow S_{+}(\varphi)(z)=s_{-}(\underbrace{\left.\varphi+i S_{\omega} e^{-\varepsilon \omega / z} \varphi_{\omega}\right)(z)}_{=S_{\omega}(\varphi)} \\
& \uparrow \\
& \text { Stokes antomaphism }
\end{aligned}
$$

$S_{\omega}(\varphi)$ is a trans-series:
a generalization of the votion of formal pewer series, analytically contentful upon Borel resummation

Asymptotics of perturbative coefficionts
$\hat{\varphi}(\zeta)=\Sigma \frac{a_{n}}{n!} \zeta^{n} \quad$ kuove about all perturbative coefficicurb a_{n}

$$
\begin{aligned}
\frac{a_{n}}{n!} & =\frac{1}{2 \pi i} \oint \frac{\hat{\varphi}(\varepsilon)}{\varepsilon^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int \frac{\hat{\varphi}(\varepsilon)}{\varepsilon^{n+1}} d \xi \\
& \sim \frac{1}{n!} \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\varepsilon_{\omega}\right)^{k-n} \Gamma(n-k) \\
n & >1
\end{aligned}
$$

Comparing to asymptotics of F_{g}

$$
\hat{\varphi}(\zeta)=\sum \frac{a_{n}}{n!} \zeta^{n}
$$

knows about all perturbative coefficicins a_{n}

$$
\begin{aligned}
& \frac{a_{n}}{n!}=\frac{1}{2 \pi i} \oint \frac{\hat{\varphi}(\varepsilon)}{\varepsilon^{n+1}} d \xi \\
&=\frac{1}{2 \pi i} \int \frac{\hat{\varphi}(\xi)}{e^{n+1}} d \xi \\
& \sim \frac{1}{n!} \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k) \\
& n>1
\end{aligned}
$$

Comparing to asyuptotics of \mathcal{F}_{g}

$$
\frac{a_{n}}{n!}=
$$

$$
\sim \frac{1}{n!} \frac{S_{0}}{2 \pi} \sum_{k=1}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k)
$$

Comparing to asymptotics of F_{g}

$$
a_{n} \sim \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k)
$$

Comparing to asymptotics of \mathcal{F}_{g}

$$
\begin{aligned}
& a_{n} \sim \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k) \\
& F_{g}(x) \sim-\frac{x}{2 \pi^{2}}\left(1+\frac{1}{2 g^{2}}\right)\left(\delta x^{0}\right)^{2-2 g} \Gamma(2 g-1)
\end{aligned}
$$

Comparing to asymptotics of F_{g}

$$
\begin{aligned}
& a_{n} \sim \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k) \\
& \mathcal{F}_{g}(x) \sim-\frac{x}{2 \pi^{2}}\left(1+\frac{1}{2 g^{2}}\right)\left(\xi \delta x^{0}\right)^{2-2 g} \Gamma(2 g-1) \\
&=-\frac{x}{4 \pi^{2}}\left(1+\frac{1}{2 g-2}\right)\left[\left(\xi x^{0}\right)^{2-2}+\left(-\Uparrow\left(x^{0}\right)^{2-2 j}\right]\right. \\
& \quad \times \Gamma(2 g-1)
\end{aligned}
$$ symmetry

Comparing to asymptotics of F_{g}

$$
\begin{aligned}
a_{n} \sim & \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k) \\
F_{g}(x) \sim & -\frac{x}{2 \pi^{2}}\left(1+\frac{1}{2 g^{-2}}\right)\left(\xi x^{0}\right)^{2-2 g} \Gamma(2 g-1) \\
= & -\frac{x}{4 \pi^{2}}\left(1+\frac{1}{2 g^{2}}\right)\left[\left(\xi x^{0}\right)^{2-2 g}+\left(-\left\{\delta x^{0}\right)^{2-2 j}\right]\right. \\
= & -\frac{x}{2 \pi}\left[\frac { N x ^ { 0 } } { 2 \pi } \left(\$\left(x^{0}\right)^{1-2 g} \Gamma(2 g-1) \quad \times \Gamma(2 g-1)\right.\right. \\
& \quad+\frac{1}{2 \pi}\left(\$\left\{x^{0}\right)^{2-2} \rho \Gamma(2 g-2)+x^{0} \rightarrow-x^{0}\right]
\end{aligned}
$$

Comparing to asymptotics of F_{g}

$$
\begin{aligned}
& a_{n} \sim \frac{S_{0}}{2 \pi} \sum_{k=0}^{\infty} c_{k}\left(\sum_{\omega}\right)^{k-n} \Gamma(n-k) \\
& F_{g}(X) \sim-\frac{x}{2 \pi^{2}}\left(1+\frac{1}{2 g^{-2}}\right)\left(\leqslant x^{0}\right)^{2-2 g} \Gamma(2 g-1) \\
& =-\frac{x}{4 \pi^{2}}\left(1+\frac{1}{2 g^{-2}}\right)\left[\left(\left\{x^{0}\right)^{2-2 s}+\left(-\left\{\left\{x^{0}\right)^{2-2 s}\right]\right.\right.\right. \\
& =-\frac{X}{2 \pi}\left[\frac{N x^{0}}{2 \pi}\left(\$ X^{0}\right)^{1-2 g} \Gamma\left(z_{j}-1\right)\right. \\
& \times \Gamma(2 g-1) \\
& +\frac{1}{2 \pi}\left(\$\left\{x^{0}\right)^{2-2} \Gamma \Gamma(2 g-2)+x^{0} \rightarrow-x^{0}\right] \\
& \Rightarrow \quad S_{\text {MUM }}=-x, \quad \rho_{0}=N X^{0}, \\
& c_{0}=\frac{\xi_{0}}{2 \pi}, \quad c_{1}=\frac{1}{2 \pi}, c_{k \geqslant 2}=0
\end{aligned}
$$

Lessons

1. Stokes constant integer, related to geometric data
2. Singularities at integral periods
3. In this case, $c_{0}=\frac{\sum_{\omega}}{2 \pi}, c_{1}=\frac{1}{2 \pi}$,

$$
C_{k \geqslant 2}=0
$$

OK
Now what?

OK...
Now what?
\rightarrow Apply ideas from resigence to $I_{\text {top }}$, in particalar: make trans-serics ausatz

Conso-Santamaria, Edebtein, Schicple, Vouk
3. Computing instanton corrections to $F_{\text {top }}$

Solving HAE for trans-serics ansate I
Fact: simularitics $\sum 0$ in Bored plane occur in integral multiples : $\underbrace{\sum_{0}, 2 \xi \omega, 3 \xi \omega}_{\text {Ko instanton sector }}$

$$
\begin{aligned}
F & =F^{(0)}+\sum_{\omega} F^{(\omega)} \\
& =F^{(0)}+\sum_{l>1} C^{l} F^{(l \text { leading }}+\ldots
\end{aligned}
$$

book keefily device
For simplicity: $F^{(e t)} \rightarrow F^{(l)}$

$$
F^{(1)}=e^{-A / g_{s}} \sum_{n \geq 0} F_{n}^{(1)} g_{s}^{n-1}
$$

Solving HAE for trans-serics ansate II

$$
F^{(1)}=e^{-A / g_{s}} \sum_{n \geq 0} F_{n}^{(1)} g_{s}^{n-1}
$$

Plug into HAE, solve for leading order is gs:

$$
F_{0}^{(1)}={\underset{\uparrow}{0}}_{\left.f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} S^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{S}^{z}+\mathcal{A}^{2} \tilde{S}\right)\right)}
$$

undetermined holomorphic f on
\rightarrow need boundary conditions!'

Boundary conditions for non-holomophic HAE I
Based on exact results at tull and comipld pt:
Conjecture: Specialized to any frame in which A coincides with one of the A-periods,

$$
\begin{aligned}
& F^{(1)} \longmapsto F_{t}^{(1)}=\frac{1}{2 \pi}\left(\frac{d}{g_{c}}+1\right) e^{-A / g_{s}} \\
& \text { ie. } \quad F_{0}^{(1)}, t=\frac{1}{2 \pi} d, \quad \mathcal{F}_{1, t}^{(1)}=\frac{1}{2 \pi}, \\
& F_{u, A}^{(1)}=0 \quad \text { for } n \geq 2
\end{aligned}
$$

Boundary conditions for von-holomarphic HAE I

Conjecture:

$$
\begin{gathered}
\mathcal{F}_{0, A}^{(1)}=\frac{1}{2 \pi} A, \quad \mathcal{F}_{1, t}^{(1)}=\frac{1}{2 \pi}, \\
\mathcal{F}_{n, A}^{(1)}=0 \quad \text { for } n \geq 2
\end{gathered}
$$

Boundary conditions for non-holomorphic HAE I
Conjecture:

$$
\begin{aligned}
& \mathcal{F}_{0}^{(1)} t=\frac{1}{2 \pi} A, \quad \mathcal{F}_{1, t}^{(1)}=\frac{1}{2 \pi}, \\
& \mathcal{F}_{n, A}^{(1)}=0 \quad \text { for } n \geq 2
\end{aligned}
$$

Boundary conditions for non-holonasphic HAE II
Conjecture: $\quad \mathcal{F}_{0}^{(1)}, t=\frac{1}{2 \pi} A, \quad \mathcal{F}_{1, t}^{(1)}=\frac{1}{2 \pi}$,

$$
\begin{gathered}
\mathcal{F}_{n, A}^{(1)}=0 \quad \text { for } n \geq 2 \\
F_{0}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} S^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{S}^{z}+\mathcal{A}^{2} \tilde{S}\right)
\end{gathered}
$$

undetermined holomorphic fen
\rightarrow need boundary conditions!'

Boundary conditions for non-holomorphic HAE II
Conjecture:

$$
\begin{array}{r}
\mathcal{F}_{n, \mathcal{A}}^{(1)}=0 \quad \text { for } n \geq 2 \\
F_{0}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} S^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{S}^{z}+\mathcal{A}^{2} \tilde{S}\right) \\
\rightarrow \quad \mathcal{F}_{0, \mathcal{A}}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} \mathcal{S}_{\mathcal{A}}^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{\mathcal{S}}_{\mathcal{A}}^{z}+\mathcal{A}^{2} \tilde{\mathcal{S}}_{\mathcal{A}}\right)
\end{array}
$$

Boundary conditions for non-holomorphic HAE II
Conjecture:

$$
\begin{gathered}
\mathcal{F}_{u, \mathcal{A}}^{(1)}=0 \quad \text { for } n \geq 2 \\
F_{0}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} S^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{S}^{z}+\mathcal{A}^{2} \tilde{S}\right) \\
\rightarrow \mathcal{F}_{0, \mathcal{A}}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} \mathcal{S}_{\mathcal{A}}^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{\mathcal{S}}_{\mathcal{A}}^{z}+\mathcal{A}^{2} \tilde{\mathcal{S}}_{\mathcal{A}}\right) \\
\vdots
\end{gathered}
$$

Boundary conditions for non-holomorphic HAE II
Conjecture:

$$
\mathcal{F}_{0}^{(1)} d=\frac{1}{2 \pi} d, \quad \mathcal{F}_{1, t}^{(1)}=\frac{1}{2 \pi},
$$

$$
\mathcal{F}_{n, A}^{(1)}=0 \quad \text { for } n \geq 2
$$

$$
F_{0}^{(1)}=f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} S^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{S}^{z}+\mathcal{A}^{2} \tilde{S}\right)
$$

$$
\begin{aligned}
\rightarrow \mathcal{F}_{0, \mathcal{A}}^{(1)}= & f_{0}^{(1)} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2} \mathcal{S}_{\mathcal{A}}^{z z}-\mathcal{A} \partial_{z} \mathcal{A} \tilde{\mathcal{S}}_{\mathcal{A}}^{z}+\mathcal{A}^{2} \tilde{\mathcal{S}}_{\mathcal{A}}\right) \\
& \stackrel{!}{=} \frac{1}{2 \pi} \mathcal{A} \\
\Rightarrow \quad F_{0}^{(1)}= & \frac{1}{2 \pi} \mathcal{A} \exp \left(\frac{1}{2}\left(\partial_{z} \mathcal{A}\right)^{2}\left(S^{z z}-\mathcal{S}_{\mathcal{A}}^{z z}\right)-\mathcal{A} \partial_{z} \mathcal{A}\left(\tilde{S}^{z}-\tilde{\mathcal{S}}_{\mathcal{A}}^{z}\right)+\mathcal{A}^{2}\left(\tilde{S}^{2}-\tilde{\mathcal{S}}_{\mathcal{A}}\right)\right)
\end{aligned}
$$

Valid in any frame!

All order solution for one-instanton sector
With much more wat, we arrive at closed formula for $F^{(1)}$.

To avoid introducing too much notation, let's specialize to a frame $\left\{X^{I}, P_{I}\right\}$ in the instanton sector

$$
\mathcal{F}^{(1)}=\frac{1}{2 \pi}\left(1+g_{s} c^{J} \frac{\partial \mathcal{F}}{\partial X^{J}}\left(X^{I}-g_{s} c^{I}\right)\right) \exp \left[\mathcal{F}\left(X^{I}-g_{s} c^{I}\right)-\mathcal{F}\left(X^{I}\right)\right]
$$

$$
\mathcal{F}=\frac{1}{g_{s}^{2}} \tilde{\mathcal{F}}_{0}+\tilde{\mathcal{F}}_{1}+\sum_{g \geq 2} g_{s}^{2 g-2} \mathcal{F}_{g}
$$

4. Experimental evidence

Mapping ont the Bored plane
When sufficient number of coefficients a_{n} (her F_{g}) are available, leading \log singularities in $\hat{\varphi}$ (here $\hat{F}^{(0)}$) visible as accummatio of poles of its Padé approximant
\uparrow approximation by rational fin
\Rightarrow can identity instauton sectors to which to aptly our analysis

Check of method: near MuM pf M MCAM frame

Poles of Padé approximant to $\hat{\mathcal{F}}(0)$, evaluated to $g=64$
at $z=10^{-2} \mu$ for the quintic Calabi-Yan.
τ fled part

Poles of Padé approximant to $\hat{\mathcal{F}}(0)$, evaluated to $\delta=64$ at $z=\left(1-10^{-6}\right) \mu$ for the quintic Calabi-Yan.

Mapping ont the Bed plane near the Mus pt

Figure 6: The location of the poles of the Padé approximant to $\widehat{\mathcal{F}}^{(0)}\left(X^{1}, P_{0}\right)$, on the left, and $\widehat{\mathcal{F}}^{(0)}\left(P_{0_{\lambda}} P_{1}\right)$, on the right, evaluated to order $g=64$ at $z=10^{-2} \mu$. The black dots carespond to the position of the periods $\aleph\left(m X^{0}+n X^{1}\right),(m, n)=(1,0)$ (on the imaginary axis), $(0,1),(1,1),(2,1), \ldots$.
random
frame

Mapping out the Bora plane vear che pt

Figure 8: The location of the poles of the Padé approximant to $\widehat{\mathcal{F}}^{(0)}\left(X^{0}, X^{1}\right)$, on the left, and $\widehat{\mathcal{F}}^{(0)}\left(P_{0}, P_{1}\right)$, on the right, evaluated to order $g=64$ at $z=\frac{5}{6} \mu$. The black dots correspond to the position of the period $\aleph P_{0}$.

Checking theoretical one instanton amplitudes against asyuptotics
Recall leading asymptotics:

$$
\mathcal{F}_{g} \sim \frac{\mathrm{~S}_{\mathcal{A}}}{2 \pi} \frac{\Gamma(2 g-1)}{\mathcal{A}^{2 g-1}} \mathcal{F}_{0}^{(\mathcal{A})}+\frac{\mathrm{S}_{-\mathcal{A}}}{2 \pi} \frac{\Gamma(2 g-1)}{(-\mathcal{A})^{2 g-1}} \mathcal{F}_{0}^{(-\mathcal{A})}
$$

Extract $于_{0}^{(t)}$ via

$$
s_{\mathcal{A}, g}^{0}=\frac{\mathcal{A}^{2 g-1}}{\Gamma(2 g-1)} \mathcal{F}_{g} \quad \xrightarrow{g \gg 1} \quad \frac{\mathrm{~S}_{\mathcal{A}}}{\pi} \mathcal{F}_{0}^{(\mathcal{A})}
$$

| Checking theoretical one instanton correction against asymptotics |
| :---: | :---: | :---: | :---: |

Table 10: Comparison, in the frame $\left(X^{0}, X^{1}\right)$, between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathrm{S}_{\mu}}{\pi} \mathcal{F}_{0}^{(\mu)}$ and the prediction, using $\mathrm{S}_{\mu}=1$, for the example of the quintic.

z	Asymptotic estimate I	Asymptotic estimate II	Prediction
$\mu / 8$	$1 . \times 10^{9}$	-2.0685×10^{-8}	-2.0618×10^{-8}
$\mu / 7$	10000	-4.659137×10^{-8}	-4.658992×10^{-8}
$\mu / 6$	0.01	$-1.163074023 \times 10^{-7}$	$-1.163074007 \times 10^{-7}$
$\mu / 5$	-3.335×10^{-7}	$-3.313309985143 \times 10^{-7}$	$-3.313309985104 \times 10^{-7}$
$\mu / 3$	$-5.1510310321251 \times 10^{-6}$	$-5.151031032069825626 \times 10^{-6}$	$-5.151031032069825187 \times 10^{-6}$
$\mu / 2$	-0.000038081205262381317350	-0.000038081205262381317350	-0.000038081205262381316984
$5 \mu / 6$	-0.000374000001694825755160	-0.000374000001694825755160	-0.000374000001694825754743
$23 \mu / 24$	-0.0004997585182539551567396	-0.0004997585182539551567396	-0.0004997585182539551566954

Table 10: Comparison, in the frame $\left(X^{0}, X^{1}\right)$, between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathrm{S}_{\mu}}{\pi} \mathcal{F}_{0}^{(\mu)}$ and the prediction, using $\mathrm{S}_{\mu}=1$, for the example of the quintic.

Checking theoretical one inotanton correction against asymptotics

Table 10: Comparison, in the frame $\left(X^{0}, X^{1}\right)$, between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathrm{S}_{\mu}}{\pi} \mathcal{F}_{0}^{(\mu)}$ and the prediction, using $\mathrm{S}_{\mu}=1$, for the example of the quintic.

Checking theoretical one instanton correction against asymptotics

Table 10: Comparison, in the frame $\left(X^{0}, X^{1}\right)$, between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathrm{S}_{\mu}}{\pi} \mathcal{F}_{0}^{(\mu)}$ and the prediction, using $\mathrm{S}_{\mu}=1$, for the example of the quintic.

Conclusions

1. Instanton coefficients captured by holomorphic anomaly equations.
2. Integer shill - in units of g_{s} - of moduli features in exact solution for trans-scrics correction
3. Integral structure

- silyularitis in Basel plane at integral periods
- Stokes constants topological I enumerative invariants

Conclusions

1. Instanton coefficients captured by holomorphic anomaly equations.

Why?
2. Integer shill - in units of g_{s} - of moduli features in exact solution for trans-scrics correction
3. Integral structure Quantization of moduli space?

- silyularitios in Basel plane D-braves? at integral periods
- Stokes constants topological / enumerative invariants

