Montpellies, 27/10/2023

One slide summary of talk
Topological string theory starts out life as a vooldsheet
theory, just like string theory proper

$$T_{trop} = \sum_{3^{2}}^{\infty} T_{3} g_{s}^{2} 5^{-2}$$
 is $\frac{\sqrt{3}}{3}$
 $T_{trop} = \sum_{3^{2}}^{\infty} T_{3} g_{s}^{2} 5^{-2}$ is $\frac{\sqrt{3}}{3}$
 \cdot intrividly perturbative definition of Trop
 $\cdot T_{5}$ grow factorially $\rightarrow T_{trp}$ diverse factorially
Without providing non-perturbative definition of theory,
we will compute correction to T_{top} of the form
 $e^{-\ell t/g_{s}} \sum_{2^{2}}^{\infty} T_{k}^{(\ell)} g_{s}^{k-1}$

One slide summar of talk: Topological string theory starts life as a wooldsheet theory, just like string theory proper at 1 $T = \sum_{j=0}^{\infty} T_{gjs}^{2j-2}$ intrinically portulative definition
 T_S grow factorially - T diverge factorially Without providing a non-perturbative definition of Kear, we will compute consection, $e^{-ld/g_s} \sum_{k=0}^{\infty} \overline{F_k} g_s$ exactly.

Structure of talk 1. Review of topological strings 2. Revier of resurgence 3. Computing instanton consection to Flop 4. Experimental evidence

1. Review of topological strings

Revices of topological strings

Type II chings on R^{1,3} × Calabi-Yau

Revices of topological chings Type I chings on R'13 × Calabi-Yau distinguished class of 3 cptr dim't uflds M

Revices of topological strings Type I chings on R'13 × Calabi-Yau >> 4 d theory with N=2 supersymmetry

Revices of topological strings Type I chings on R^{1,3} × Calabi-Yau >> 4 d theory with N=2 supersymmetry Woldsteet theory > 2d N=(2,2) theory $\begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \end{array} \rightarrow$ CY

Revices of topological chings etrings on R'13 × Calabi-Yau Type II >> 4 d theory with N=2 supersymmetry Woldsteet Pleasy > 2d N= (2,25 Reay $\bigcirc \ \ \, \rightarrow \ C \Upsilon$ tristy topological string theory

Fig does not depend on moduli
$$f$$
 Premann surface
 \rightarrow the moduli space M_{f} is integrated over.

The B-model The Fg are fors on the complex characture moduli space Maple of M. $X = \{ p(x_1, ..., x_5) = 0 \} \subset \mathbb{P}^4$ Eg. Épolynomial : coefficients zi détermine cplx structure

 \rightarrow $\mp_{g}(z_{i})$

· Computable subsector of string theory

· Counts BPS perticles

· Counts BPS particles

· Counts BPS particles

Distinguished points on moduli space

· Computes terms in effective 4d action of Calabi-Yan compactifications L'important q. in blackhole physics Z: map to VEVs of scalars

Special geometry I

Computable as pover series (+ logarithms) solutions of differential quations anyshere on moduli space.

 $TT = \begin{pmatrix} S & Q \\ B^{\circ} \\ \vdots \\ S & Q \\ B^{n} \\ S & Q \\ A_{n} \end{pmatrix} = \vdots \begin{pmatrix} P_{0} \\ \vdots \\ P_{n} \\ X^{\circ} \end{pmatrix}$ period vector

Special geometry I

$$TT = \begin{pmatrix} I & Q \\ B^{*} & \vdots \\ J & Q \\ B^{*} & \vdots \\ J & Q \\ A_{n} & \vdots \\ J & Q \end{pmatrix} = \begin{pmatrix} P_{0} \\ \vdots \\ P_{n} \\ X^{0} \\ \vdots \\ X^{n} \end{pmatrix}$$
Period
vector

$$X^{0} \begin{pmatrix} \vdots \\ \vdots \\ X^{n} \end{pmatrix}$$
Locally, the XT furnish projective coordinates
on Maple

$$Z \mapsto (X^{0}(z) : \dots : X^{n}(z)) \in \mathbb{P}^{n+1}$$
Affine coordinates $t^{i}(z) := X^{i}(z)/X^{0}(z)$

Special geometry
$$\mathbb{I}$$

A distinguished metric on M_{cplx} is induced by
Re Kähler form K defined via
 $e^{-K} = i\int \Omega \cdot \overline{\Omega}$

Note that K is not a holomorphic for of Z.

The holomorphic anomaly equations I
. The twisting procedure renders anti-holomorphic
dependence of Fg Q-exact

$$\rightarrow$$
 Fj picks up Z dependence only
from 2Mg
 \Rightarrow sources of Z dependence
 $\overrightarrow{}$, $\overrightarrow{}$, $\overrightarrow{}$, $\overrightarrow{}$

→ sources of z dependence

The holomorphic anomaly equations II
The HAE imply the following structure theorem for
the HAE imply the following structure theorem for
the Fg : all non-holomorphic dependence is
captured by a finite set of generators :

$$\sum S^{ik}, S^{k}, S, KS$$

propagators
where $\partial_{\tau} S^{jk} = C_{\tau}^{jk}, \ \partial_{\tau} S^{k} = G_{\tau}^{j} S^{ik}$
 $\partial_{\tau} S = G_{\tau}^{j} S^{i}$

$$\frac{\partial F_g}{\partial S^{ij}} = \frac{1}{2} D_i D_j F_{g-1} + \frac{1}{2} \sum_{h=1}^{g-1} D_i F_h D_j F_{g-h} , \qquad \frac{\partial F_g}{\partial K_i} + S^i \frac{\partial F_g}{\partial S} + S^{ij} \frac{\partial F_g}{\partial S^j} = 0 .$$

Explicit for of Fz for 1-parameter model

$$F_{2} = \frac{5}{24}C_{111}^{2} \left(S^{11}\right)^{3} + \frac{1}{8} \left(\partial_{1}C_{111} - 3C_{111}q_{11}^{1} + 4C_{111}f_{1}^{(1)}\right) \left(S^{11}\right)^{2} \\ + \left(\frac{1}{4}q_{1}^{11}C_{111} + \frac{1}{2}\partial_{1}f_{1}^{(1)} + \frac{1}{2}f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1}\right) + \frac{1}{2} \left(1 - \frac{\chi}{24}\right)q_{11}\right)S^{11} \\ + \frac{\chi}{48} \left(C_{111}S^{11} + 2f_{1}^{(1)}\right)\tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1\right)\tilde{S} + f_{2}(z).$$

Explicit for of Fz for 1-parameter model

$$F_{2} = \frac{5}{24}C_{111}^{2} \left(S^{11}\right)^{3} + \frac{1}{8} \left(\partial_{1}C_{111} - 3C_{111}q_{11}^{1} + 4C_{111}f_{1}^{(1)}\right) \left(S^{11}\right)^{2} \\ + \left(\frac{1}{4}q_{1}^{11}C_{111} + \frac{1}{2}\partial_{1}f_{1}^{(1)} + \frac{1}{2}f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1}\right) + \frac{1}{2}\left(1 - \frac{\chi}{24}\right)q_{11}\right)S^{11} \\ + \frac{\chi}{48} \left(C_{111}S^{11} + 2f_{1}^{(1)}\right)\tilde{S}^{1} + \frac{\chi}{24}\left(\frac{\chi}{24} - 1\right)\tilde{S} + f_{2}(z).$$

Euler directivity of \tilde{M} (the minor to M)

Explicit for of Fz for 1-parameter model

$$\begin{split} F_{2} &= \frac{5}{24} C_{111}^{2} \left(S^{11} \right)^{3} + \frac{1}{8} \left(\partial_{1} C_{111} - 3 C_{111} q_{11}^{1} + 4 C_{111} f_{1}^{(1)} \right) \left(S^{11} \right)^{2} \\ &+ \left(\frac{1}{4} q_{1}^{11} C_{111} + \frac{1}{2} \partial_{1} f_{1}^{(1)} + \frac{1}{2} f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1} \right) + \frac{1}{2} \left(1 - \frac{\chi}{24} \right) q_{11} \right) S^{11} \\ &+ \frac{\chi}{48} \left(C_{111} S^{11} + 2 f_{1}^{(1)} \right) \tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1 \right) \tilde{S} + f_{2}(z). \end{split}$$
Specify genetry data

.
$$F_{2} = \frac{5}{24}C_{111}^{2} \left(S^{11}\right)^{3} + \frac{1}{8} \left(\partial_{1}C_{111} - 3C_{111}q_{11}^{1} + 4C_{111}f_{1}^{(1)}\right) \left(S^{11}\right)^{2} \\ + \left(\frac{1}{4}q_{1}^{11}C_{111} + \frac{1}{2}\partial_{1}f_{1}^{(1)} + \frac{1}{2}f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1}\right) + \frac{1}{2} \left(1 - \frac{\chi}{24}\right)q_{11}\right)S^{11} \\ + \frac{\chi}{48} \left(C_{111}S^{11} + 2f_{1}^{(1)}\right)\tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1\right)\tilde{S} + f_{2}(z).$$

.

$$\begin{split} F_{2} &= \frac{5}{24} C_{111}^{2} \left(S^{11} \right)^{3} + \frac{1}{8} \left(\partial_{1} C_{111} - 3 C_{111} q_{11}^{1} + 4 C_{111} f_{1}^{(1)} \right) \left(S^{11} \right)^{2} \\ &+ \left(\frac{1}{4} q_{1}^{11} C_{111} + \frac{1}{2} \partial_{1} f_{1}^{(1)} + \frac{1}{2} f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1} \right) + \frac{1}{2} \left(1 - \frac{\chi}{24} \right) q_{11} \right) S^{11} \\ &+ \frac{\chi}{48} \left(C_{111} S^{11} + 2 f_{1}^{(1)} \right) \tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1 \right) \tilde{S} + f_{2}(z). \end{split}$$

$$F_{2} = \frac{5}{24}C_{111}^{2} \left(S^{11}\right)^{3} + \frac{1}{8} \left(\partial_{1}C_{111} - 3C_{111}q_{11}^{1} + 4C_{111}f_{1}^{(1)}\right) \left(S^{11}\right)^{2} \\ + \left(\frac{1}{4}q_{1}^{11}C_{111} + \frac{1}{2}\partial_{1}f_{1}^{(1)} + \frac{1}{2}f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1}\right) + \frac{1}{2} \left(1 - \frac{\chi}{24}\right)q_{11}\right)S^{11} \\ + \frac{\chi}{48} \left(C_{111}S^{11} + 2f_{1}^{(1)}\right)\tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1\right)\tilde{S} + f_{2}(z).$$

.

$$F_{2} = \frac{5}{24}C_{111}^{2} \left(S^{11}\right)^{3} + \frac{1}{8} \left(\partial_{1}C_{111} - 3C_{111}q_{11}^{1} + 4C_{111}f_{1}^{(1)}\right) \left(S^{11}\right)^{2} \\ + \left(\frac{1}{4}q_{1}^{11}C_{111} + \frac{1}{2}\partial_{1}f_{1}^{(1)} + \frac{1}{2}f_{1}^{(1)} \left(f_{1}^{(1)} - q_{11}^{1}\right) + \frac{1}{2} \left(1 - \frac{\chi}{24}\right)q_{11}\right)S^{11} \\ + \frac{\chi}{48} \left(C_{111}S^{11} + 2f_{1}^{(1)}\right)\tilde{S}^{1} + \frac{\chi}{24} \left(\frac{\chi}{24} - 1\right)\tilde{S} + f_{2}(z).$$

In a moment, we will rewrite the holomorphic anomaly equation in terms of $\pm^{(0)} = \Sigma + \Xi g^{2}g^{2}$, but first...

Back to physics. Re holomorphic limit I To describe physics in vicinity of z'e Mapl sepuises croice of frame 1. Adapted choice of A-periode X^{I} local coordinates $z_i \longrightarrow X^i/_{X'}$ to yield $z_i \longrightarrow X'/_{X^o}$ 2. Specialization $\Xi \longrightarrow Z^*$ volomorphic limit

Back to physics: Me holomorphic limit I

2. Specialization $\Xi \longrightarrow Z^*$ volomorphic limit Back to physics: Re holomorphic limit II

2. Specialization $\overline{z} \rightarrow \overline{z^*}$ holomorphic limit

In practice,

$$\begin{split} \mathcal{S}^{zz} &= -\frac{1}{C} \left(\frac{w_{0,2}}{w_{0,1}} - q_{zz}^z \right), \qquad \tilde{\mathcal{S}}^z = -\frac{1}{C} \left(\frac{w_{1,2}}{w_{0,1}} - q_{zz} \right), \\ \tilde{\mathcal{S}} &= -\frac{1}{2C} \left(\frac{w_{1,3}}{w_{0,1}} - \partial_z q_{zz} - q_{zz} q_{zz}^z \right) + \frac{\partial_z C}{2C^2} \left(\frac{w_{1,2}}{w_{0,1}} - q_{zz} \right) - \frac{q_z^z}{2} \ . \end{split}$$

where
$$w_{i,j} = \partial_z^j X^0_* \partial_z^i X^1_* - \partial_z^i X^0_* \partial_z^j X^1_*,$$

Back to physics: Ne holomorphic limit II $F_{q} \longrightarrow F_{q}$ Fact: F, (X°, X', ..., X") is homogeneous of degree 2-25, i.e. $\mathcal{F}_{\mathcal{G}}(X^{\circ}, X', \dots, X^{n}) = (X^{\circ})^{2-2q} \mathcal{F}_{\mathcal{G}}(I, X'/X^{\circ}, \dots, X'/X^{\circ})$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2 \sin \frac{k\lambda}{2} \right)^{2g-2} Q_{\beta}^k$$

$$\text{Luinor b M}$$
Gopakumar - Vafa form of
$$\mathcal{F}^{(0)}(X) = \sum_{g=0}^{\infty} \mathcal{F}_g(X^0, \dots, X^n) \mathcal{G}_g^{2g-2}$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

special to
glues 0 and 1

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M},\mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

special to
glues 0 and 1

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M},\mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

special to
glues 0 and 1

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

$$= \frac{i\beta_i t^i}{j}$$

special to
glues 0 and 1

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

$$\lambda = \frac{(2\pi i)^{3/2} g_s}{\chi^{\circ}}$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_{\beta}^k$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\sin^{-2} x = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{4(2n-1)B_{2n}(2x)^{2n-2}}{(2n)!}, \quad \sin^2 x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x)^{2n}}{2(2n)!}$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\sin^{-2} x = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{4(2n-1)B_{2n}(2x)^{2n-2}}{(2n)!}, \quad \sin^2 x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x)^{2n}}{2(2n)!}$$
Bernoulli numbers $B_{2n} = (2n)! \frac{2(-1)^{n-1}}{(2\pi)^{2n}} \xi(2n)$

$$\left(\frac{\lambda}{g_s}\right)^{2-2g} \mathcal{F}_g(X) = \sum_{\beta \in H_2(M,\mathbb{Z})} \left((-1)^{g+1} \frac{(2g-1)B_{2g}}{(2g)!} n_{0,\beta} + \frac{2(-1)^g n_{2,\beta}}{(2g-2)!} + \cdots \right) \operatorname{Li}_{3-2g}(Q_\beta)$$

$$\mathcal{F}^{(0)}(X) = \frac{c(t)}{\lambda^2} + l(t) + \sum_{g \ge 0} \sum_{\beta \in H_2(\widetilde{M}, \mathbb{Z})} \sum_{k \ge 1} \frac{n_{g,\beta}}{k} \left(2\sin\frac{k\lambda}{2}\right)^{2g-2} Q_\beta^k$$

$$\sin^{-2}x = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{4(2n-1)B_{2n}(2x)^{2n-2}}{(2n)!}, \quad \sin^2 x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x)^{2n}}{2(2n)!}$$
Bernoulli numbers $B_{2n} = (2n)! \frac{2(-1)^{n-1}}{(2\pi)^{2n}} \xi(2n)$

$$\left(\frac{\lambda}{g_s}\right)^{2-2g} \mathcal{F}_g(X) = \sum_{\beta \in H_2(M,\mathbb{Z})} \left((-1)^{g+1} \frac{(2g-1)B_{2g}}{(2g)!} n_{0,\beta} + \frac{2(-1)^g n_{2,\beta}}{(2g-2)!} + \cdots \right) \operatorname{Li}_{3-2g}(Q_\beta)$$

$$2^{ud} \text{ source if factorials} \longrightarrow \sum_{\gamma \in I}^{\infty} \frac{\mathbb{Q}_\beta^{\gamma}}{\gamma^{3-2}\gamma}$$

$$\left(\frac{\lambda}{g_s}\right)^{2-2g} \mathcal{F}_g(X) = \sum_{\boldsymbol{\beta} \in H_2(\widetilde{M}, \mathbb{Z})} \left((-1)^{g+1} \frac{(2g-1)B_{2g}}{(2g)!} n_{0,\beta} + \frac{2(-1)^g n_{2,\beta}}{(2g-2)!} + \cdots \right) \operatorname{Li}_{3-2g}(Q_\beta)$$

$$\left(\frac{\lambda}{g_s}\right)^{2-2g} \mathcal{F}_g(X) = \sum_{\boldsymbol{\beta} \in H_2(\widetilde{M}, \mathbb{Z})} \left((-1)^{g+1} \frac{(2g-1)B_{2g}}{(2g)!} n_{0,\beta} + \frac{2(-1)^g n_{2,\beta}}{(2g-2)!} + \cdots \right) \operatorname{Li}_{3-2g}(Q_\beta)$$

Cetting our hands dirly a the that from IV

$$\left(\frac{\lambda}{g_s}\right)^{2-2g} \mathcal{F}_g(X) = \sum_{\mathcal{B} \in H_2(\tilde{M}, \mathbb{Z})} \left((-1)^{g+1} \frac{(2g-1)B_{2g}}{(2g)!} n_{0,\beta} + \frac{2(-1)^g n_{2,\beta}}{(2g-2)!} + \cdots\right) \operatorname{Li}_{3-2g}(Q_\beta)$$

$$\downarrow \text{ Euler disorderistic } \mathcal{A} \quad \mathcal{M}$$
At $\beta = 0$, with $n_{0,0} \in \mathcal{N}_2$ and $\operatorname{Li}_{3-2g}(1) = \mathcal{E}(3-2g)$
 $= B_{2g-2}/2g-2$

$$F_{g}(X) \sim -\frac{X}{2\sigma^{2}} \left(1 + \frac{1}{2g-2}\right) \left(NX^{\circ}\right)^{2-2g} \Gamma(2g-1)$$
Normalization
Constant

We can get similar results for
$$\beta \neq 0$$

 $(X \rightarrow n_{0,\beta})$, and also
at conifold in conifold frame,
but let's get back to the holomorphic
anomaly!

$$\widetilde{F}^{(0)} = F^{(0)} - g_s^{-2} F_0 = \sum_{g \ge 1} F_g g_s^{2g-2} \quad \text{and} \quad \widehat{F}^{(0)} = \widetilde{F}^{(0)} - F_1 = \sum_{g \ge 2} F_g g_s^{2g-2}$$

I dea : torjet perturbative roots of this equation!

 $\frac{\partial \widehat{F}^{(\mathscr{Y})}}{\partial S^{ij}} - \frac{1}{2} K_i \frac{\partial \widehat{F}^{(\mathscr{Y})}}{\partial \widetilde{S}^j} - \frac{1}{2} K_j \frac{\partial \widehat{F}^{(\mathscr{Y})}}{\partial \widetilde{S}^i} + \frac{1}{2} \frac{\partial \widehat{F}^{(\mathscr{Y})}}{\partial \widetilde{S}} K_i K_j = \frac{g_s^2}{2} \hat{D}_i \hat{D}_j \widetilde{F}^{(\mathscr{Y})} + \frac{g_s^2}{2} \hat{D}_i \widetilde{F}^{(\mathscr{Y})} \hat{D}_j \widetilde{F}^{(\mathscr{Y})},$ $\partial \widehat{F}^{(\mathscr{Y})}$

$$\frac{\partial I^{\prime}}{\partial K_i} = 0.$$

OK ...

Now what?

2. Révieu 1 résuspence

hesuzence

How to extract non-perturbative informative from a formal power cercs?

Boxel recumulation I
Counider a factorially divergent series

$$q(z) = \sum \alpha_n z^n$$
, $\alpha_n \sim n!$
formal power series
improve convergence by counider j Boxel transform
 $\hat{q}(\xi) = \sum \frac{\alpha_n}{n!} \xi^n$
if $\hat{q}(\xi) = \sum \frac{\alpha_n}{n!} \xi^n$
if $\hat{q}(\xi)$ exists around the origin and can be
analytically continued to the complex ξ -plane
 $\rightarrow q$ is a receipted for solution

Boxel recommention
$$\overline{I}$$

Relevance of $\hat{\varphi}(\xi) = \sum_{n=1}^{\infty} \xi^n ?$
Consider its Laplace transform
 $\int_{0}^{\infty} \hat{\varphi}(\xi) e^{-\xi} d\xi$
 $\rightarrow \sum_{n=1}^{\infty} \int_{n=1}^{\infty} \frac{a_n}{n!} (\xi_z)^n e^{-\xi} d\xi$
 $= \sum_{n=1}^{\infty} a_n z^n \frac{1}{n!} \int_{0}^{\infty} \xi^n e^{-\xi} d\xi$
 $= \varphi(z)$

Bosel resummation I y Laplace transform exists, $\int \hat{\varphi}[\xi z] e^{-\xi} d\xi \sim \sum a_n z^n$ asymptotic expansion Terminology $s(q)(z) = \int \hat{q}(\xi z) e^{-\xi} d\xi$ is the Bosel resummation of the formal power series of.
What can go vrong? slylz) = jûlze-2dg $= \frac{1}{z} \left[\hat{q}(\xi) e^{-\xi/z} d\xi \right]$ arj z

What can go vrong? s(q)(z) = [q(gz)e - g dg

 $= \frac{1}{z} \int \hat{q}(z) e^{-\frac{z}{z}} d\zeta$ arj z

If q(Z) has a signality on integration path,

What can go wrony?

4 ĝ(Z) has a snyularity on integration path, integral is ill defined.

Lateral Borel resummation $s(q)(z) = \frac{1}{z} \int \hat{q}(z) e^{-\frac{1}{z}} d\xi$

4 (Z) has a signality on integration path, integral is ill defined.

Lateral Borel resummation

 $s^{\ddagger}(q)(z) = \frac{1}{z} \int \hat{q}(\xi) e^{-\xi/z} d\xi$

Intégrate above or below engularity:

$s \neq (q)(z)$		$\left(O\left(z\right) \right)$
5- (y)(z)	Ŭ	Q 12)

 $s+(q)(z) - s^{-}(q)(z) \sim 0$

eg. e⁻¹/z

Singularities in the Basel plane I
Let
$$Q$$
 be indexing set of singular points S , i.e.
 $S = \{ g_O \mid O \in Q \}$

Common case : logarithmic singularity at
$$\xi_{\omega}$$

 $\hat{\varphi}(\xi_{\omega} + \xi) = -\frac{S_{\omega}}{2\pi} \log(\xi) \hat{\varphi}_{\omega}(\xi) + regular$
 $\hat{\varphi}_{\omega}(\xi) = \sum_{n=0}^{\infty} \hat{c}_n \xi^n$ has finite radius f
convergence

$$\hat{\varphi}(\xi_{\omega} + \xi) = -\frac{S_{\omega}}{2\pi} \log(\xi)\hat{\varphi}_{\omega}(\xi) + \operatorname{regular}$$

$$s_{+}(\varphi)(z) - s_{-}(\varphi)(z) = \int \hat{\varphi}(\xi) e^{-\xi/z} d\xi$$

$$= i S_{\omega} e^{-\xi_{\omega}/z} s_{-}(\varphi_{\omega})(z)$$

$$exponentially suppressed$$

$$s_{+}(\varphi)(z) - s_{-}(\varphi)(z) = iS_{\omega}e^{-\frac{z_{\omega}}{z}}s_{-}(\varphi_{\omega})(z)$$

$$S_{+}(\varphi)(z) = S_{-}(\varphi + iS_{\omega}e^{-\sum_{i} |z|}\varphi_{\omega})(z)$$

=: $S_{\omega}(\varphi)$
 \uparrow
Stokes automorphicm

Asymptotics of perturbative coefficients

 $\dot{\varphi}(\xi) = \sum \frac{a_n}{n!} \xi^n$

knows about all perturbative coefficients an

$$\frac{\alpha_{n}}{n!} = \frac{1}{2\pi i} \oint \frac{\hat{\varphi}(\xi)}{\xi^{n+1}} d\xi$$

 $\sim \frac{1}{n!} \frac{S_{\omega}}{2\pi} \sum_{k=0}^{\infty} C_k (S_{\omega})^{k-n} \Gamma(n-k)$

N »[

 $\varphi^{\wedge}(\zeta) = \sum \frac{\alpha_{n}}{\alpha'} \zeta^{n}$ knows about all perturbative coefficients an

$$\frac{\alpha_{n}}{n!} = \frac{1}{2\pi i} \oint \frac{\hat{\varphi}(\xi)}{\xi^{n+1}} d\xi$$

 $\sim \frac{1}{n!} \frac{S_{\omega}}{2\pi} \sum_{k=0}^{\infty} C_k (S_{\omega})^{k-n} \Gamma(n-k)$

N >> (

Comparing to asymptotics of Fg

•

 $\frac{Q_{2N}}{N!}$ =

 $\sim \frac{1}{n!} \frac{S_{\omega}}{2\pi} \sum_{k=0}^{\infty} C_k (S_{\omega})^{k-n} \Gamma(n-k)$

N »[

Comparing to asymptotics of
$$\overline{fg}$$

 $a_n \sim \frac{S\omega}{2\pi} \sum_{k=0}^{\infty} c_k (\underline{S}\omega)^{k-n} \Gamma(n-k)$

N

Comparing to asymptotics of
$$\overline{f_g}$$

 $a_n \sim \frac{S_{\omega}}{2\pi} \sum_{k=0}^{\infty} C_k (\underline{S}_{\omega})^{k-n} \Gamma(n-k)$

$$F_{g}(X) \sim -\frac{\chi}{2\pi^{2}} \left(1 + \frac{1}{2g-2}\right) (NX^{\circ})^{2-2g} \Gamma(2g-1)$$

Comparing to asymptotics of
$$\overline{f_g}$$

 $a_n \sim \frac{S\omega}{2\pi} \sum_{k=0}^{\infty} c_k (\underline{S}\omega)^{k-n} \Gamma(n-k)$

$$F_{g}(X) \sim -\frac{\chi}{2\pi^{2}} \left(1 + \frac{1}{2g-2}\right) \left(NX^{\circ}\right)^{2-2} J \Gamma(2g-1)$$

$$= -\frac{\chi}{4\pi^{2}} \left(1 + \frac{1}{2g-2}\right) \left[\left(NX^{\circ}\right)^{2-2} S + \left(-NX^{\circ}\right)^{2-7} S\right]$$

$$g_{s}^{2\circ} - g_{s} = -g_{s} + \Gamma(2g-1) \left[\left(NX^{\circ}\right)^{2-2} S + \left(-NX^{\circ}\right)^{2-7} S\right]$$

$$\leq \Gamma(2g-1)$$

Comparing to asymptotics of
$$\overline{fg}$$

 $a_n \sim \frac{S\omega}{2\pi} \sum_{k=0}^{\infty} c_k (\underline{S}\omega)^{k-n} \Gamma(n-k)$

$$F_{g}(X) \sim -\frac{X}{2\pi^{2}}\left(1+\frac{1}{2g-2}\right)(NX^{\circ})^{2-2}g\Gamma(2g-1)$$

$$= -\frac{\chi}{4\pi^{2}} \left(1 + \frac{1}{2g^{-2}}\right) \left[\left(\Re X^{\circ}\right)^{2-2}S + \left(-\Re X^{\circ}\right)^{2-2}S\right]$$

$$= -\frac{\chi}{2\pi} \left[\frac{NX^{\circ}}{2\pi} \left(\Re X^{\circ}\right)^{1-2}g \Gamma(2g^{-1}) + \frac{1}{2\pi} \left(\Re X^{\circ}\right)^{2-2}S \Gamma(2g^{-2}) + X^{\circ} \rightarrow -X^{\circ}\right]$$

Comparing to asymptotics of
$$\overline{f_g}$$

 $a_n \sim \frac{S_{\omega}}{2\pi} \sum_{k=0}^{\infty} c_k (\underline{S}_{\omega})^{k-n} \Gamma(n-k)$

$$F_{g}(X) \sim -\frac{\chi}{2\pi^{2}}\left(1+\frac{1}{2g-2}\right)(NX^{\circ})^{2-2}g\Gamma(2g-1)$$

$$= -\frac{\chi}{4\pi^{2}} \left(1 + \frac{1}{2g^{-2}}\right) \left[\left(\Re X^{\circ}\right)^{2-2}S + \left(-\Re X^{\circ}\right)^{2-7}S\right]$$

$$= -\frac{\chi}{2\pi} \left[\frac{\Re X^{\circ}}{2\pi} \left(\Re X^{\circ}\right)^{1-2}g \Gamma(2g^{-1}) + \frac{1}{2\pi} \left(\Re X^{\circ}\right)^{2-2}S \Gamma(2g^{-2}) + X^{\circ} \rightarrow -X^{\circ}\right]$$

$$\Rightarrow S_{HLM} = -X , \quad S_{U} = NX^{0} ,$$

$$C_{0} = \frac{S_{U}}{2\pi} , \quad C_{1} = \frac{1}{2\pi} , \quad C_{k \ge 2} = 0$$

Lessons

1. Stokes constant integer, related to geometric data 2. Singularities at integral periods 3. In this case, $c_0 = \frac{\xi_{oo}}{2\pi}$, $c_r = \frac{1}{2\pi}$,

 $C_{k=2}=0$

OK ...

Now what?

OK ...

Now what?

3. Computing instanton connections to Ftop

Solving HAE for trans-series amonta I Fact: singularities & in Borel plane occur in integral multiples : Ev, 2 Ew, 3 Ew Es instanton sector $F = T^{(0)} + \sum_{\omega} T^{(\omega)}$ $\int Leading singularity$ $= \overline{+}^{(0)} + \sum_{\substack{\ell > 1 \\ \ell > 1}} C^{\ell} \overline{+}^{(\ell + 1)} + \dots$ book keeping device tor simplicity: F(et) ~ F(e) Ck above $\mp^{(1)} = e^{-A/g_{e}} \sum_{n \ge 0} \mp^{(1)}_{n} g_{s}$

Solving HAE for trans-series ansatz I

$$T^{(1)} = e^{-dt/g_{e}} \sum_{n \ge 0} T^{(1)}_{n} g_{s}^{n-1}$$

$$F_0^{(1)} = f_0^{(1)} \exp\left(\frac{1}{2} (\partial_z \mathcal{A})^2 S^{zz} - \mathcal{A} \partial_z \mathcal{A} \tilde{S}^z + \mathcal{A}^2 \tilde{S}\right)$$

$$\uparrow$$

$$\text{undeferrind holomorphic } f_{-}^{cn}$$

$$\rightarrow \text{ need boundary conditions }.'$$

Boundary conditions for non-holomorphic HAE I
Based on exact seals at HULL and confold pt:
Conjectuse: Specialized to any frame in which it
coincides with one of the A-periods,
$$F^{(1)} \mapsto F_{t}^{(1)} = \frac{1}{2\pi} \left(\frac{1}{g_{e}} + 1\right) e^{-\frac{1}{g_{e}}} g_{s}$$

i.e. $F_{e,t}^{(1)} = \frac{1}{2\pi} t$, $F_{1,t}^{(1)} = \frac{1}{2\pi}$,
 $F_{u,t}^{(1)} = 0$ for $u \ge 2$

Boundary conditions for non-holomorphic HAE I

Conjectuse :

 $\mathcal{F}_{o, t}^{(1)} = \frac{1}{2\pi} t, \quad \mathcal{F}_{i, t}^{(1)} = \frac{1}{2\pi} ,$ $\mathcal{F}_{v, t}^{(1)} = 0 \quad \text{for } v \ge 2$

Boundary conditions for non-holomorphic HAE I
Conjecture:
$$F_{o,t}^{(1)} = \frac{1}{2\pi} d$$
, $F_{i,t}^{(1)} = \frac{1}{2\pi}$,
 $F_{n,t}^{(1)} = 0$ for $n \ge 2$

Boundary conditions for non-holomorphic the II
Conjecture:
$$\mathcal{F}_{o, t}^{(1)} = \frac{1}{2\pi \tau} t$$
, $\mathcal{F}_{i, t}^{(1)} = \frac{1}{2\pi \tau}$,
 $\mathcal{F}_{u, t}^{(1)} = 0$ for $u \ge 2$
 $F_{0}^{(1)} = f_{0}^{(1)} \exp\left(\frac{1}{2}(\partial_{z}\mathcal{A})^{2}S^{zz} - \mathcal{A}\partial_{z}\mathcal{A}\tilde{S}^{z} + \mathcal{A}^{2}\tilde{S}\right)$
 f
undeferrived holomorphic for
 \rightarrow need boundary conditions.

$$\frac{Boundary}{Conjectuse} : \mathcal{F}_{o, t}^{(1)} = \frac{1}{2\pi r} \mathcal{A}, \qquad \mathcal{F}_{i, t}^{(1)} = \frac{1}{2\pi r}, \qquad \mathcal{F}_{i, t}^{(1)} = \frac{1}{2\pi r}, \qquad \mathcal{F}_{i, t}^{(1)} = \frac{1}{2\pi r}, \qquad \mathcal{F}_{o, t}^{(1)} = \mathcal{I}_{0}^{(1)} \exp\left(\frac{1}{2}(\partial_{z}\mathcal{A})^{2}S^{zz} - \mathcal{A}\partial_{z}\mathcal{A}\tilde{S}^{z} + \mathcal{A}^{2}\tilde{S}\right)$$

$$\rightarrow \mathcal{F}_{0, \mathcal{A}}^{(1)} = f_{0}^{(1)} \exp\left(\frac{1}{2}(\partial_{z}\mathcal{A})^{2}S^{zz} - \mathcal{A}\partial_{z}\mathcal{A}\tilde{S}^{z} + \mathcal{A}^{2}\tilde{S}_{\mathcal{A}}\right)$$

Boundary conditions for non-indomorphic HAE II
Conjecture:
$$\mathcal{F}_{o_{1}}^{(1)} = \frac{1}{2\pi}\mathcal{A}$$
, $\mathcal{F}_{1,\mathcal{X}}^{(1)} = \frac{1}{2\pi}$,
 $\mathcal{F}_{u_{1}\mathcal{X}}^{(1)} = \mathcal{O}$ for $u \ge 2$
 $F_{0}^{(1)} = f_{0}^{(1)} \exp\left(\frac{1}{2}(\partial_{z}\mathcal{A})^{2}S^{zz} - \mathcal{A}\partial_{z}\mathcal{A}\tilde{S}^{z} + \mathcal{A}^{2}\tilde{S}\right)$
 $\rightarrow \mathcal{F}_{0,\mathcal{A}}^{(1)} = f_{0}^{(1)} \exp\left(\frac{1}{2}(\partial_{z}\mathcal{A})^{2}S^{zz} - \mathcal{A}\partial_{z}\mathcal{A}\tilde{S}^{z} + \mathcal{A}^{2}\tilde{S}_{\mathcal{A}}\right)$
 $\stackrel{!}{=} \frac{1}{2\pi}\mathcal{A}$

$$\Rightarrow F_0^{(1)} = \frac{1}{2\pi} \mathcal{A} \exp\left(\frac{1}{2} \left(\partial_z \mathcal{A}\right)^2 \left(S^{zz} - \mathcal{S}_{\mathcal{A}}^{zz}\right) - \mathcal{A} \partial_z \mathcal{A} \left(\tilde{S}^z - \tilde{\mathcal{S}}_{\mathcal{A}}^z\right) + \mathcal{A}^2 (\tilde{S} - \tilde{\mathcal{S}}_{\mathcal{A}})\right)$$

All order solution for one-instanton sector
With much more work, we arrive at closed formula
for
$$T^{(1)}$$
.
To avoid introducing too much notation, let's specialize
to a frame $\{X^{I}, P_{I}\}$ in the instanton sector
 $A = c^{T} P_{I} + d_{I} X^{T}$

$$\mathcal{F}^{(1)} = \frac{1}{2\pi} \left(1 + g_s c^J \frac{\partial \mathcal{F}}{\partial X^J} \left(X^I - g_s c^I \right) \right) \exp \left[\mathcal{F} \left(X^I - g_s c^I \right) - \mathcal{F} \left(X^I \right) \right].$$

$$\mathcal{F} = rac{1}{g_s^2} ilde{\mathcal{F}}_0 + ilde{\mathcal{F}}_1 + \sum_{g\geq 2} g_s^{2g-2}\mathcal{F}_g$$
 ,

4. Experimental evidence

Happing out the Bosel plane
When sufficient number of coefficients an (here
$$\mp_g$$
)
are available, leading log singularities in \hat{q}
(here $\#^{(n)}$) visible as accumulating of poles of its
Pade approximant
I approximation by rational for
 \Rightarrow can identify indentify be chick to apply
our analysis

Figure 6: The location of the poles of the Padé approximant to $\widehat{\mathcal{F}}^{(0)}(X^1, P_0)$, on the left, and $\widehat{\mathcal{F}}^{(0)}(P_{0\lambda}P_1)$, on the right, evaluated to order g = 64 at $z = 10^{-2}\mu$. The black dots correspond to the position of the periods $\aleph(mX^0 + nX^1)$, (m, n) = (1, 0) (on the imaginary axis), $(0,1), (1,1), (2,1), \ldots$

random frame

Figure 8: The location of the poles of the Padé approximant to $\widehat{\mathcal{F}}^{(0)}(X^0, X^1)$, on the left, and $\widehat{\mathcal{F}}^{(0)}(P_0, P_1)$, on the right, evaluated to order g = 64 at $z = \frac{5}{6}\mu$. The black dots correspond to the position of the period $\aleph P_0$.
Recall leading asymptotics:

$$\mathcal{F}_g \sim \frac{\mathsf{S}_{\mathcal{A}}}{2\pi} \frac{\Gamma(2g-1)}{\mathcal{A}^{2g-1}} \mathcal{F}_0^{(\mathcal{A})} + \frac{\mathsf{S}_{-\mathcal{A}}}{2\pi} \frac{\Gamma(2g-1)}{(-\mathcal{A})^{2g-1}} \mathcal{F}_0^{(-\mathcal{A})} \,.$$

Extract F.(*) via

$$s^0_{\mathcal{A},g} = \frac{\mathcal{A}^{2g-1}}{\Gamma(2g-1)} \mathcal{F}_g \quad \xrightarrow{g\gg 1} \quad \frac{\mathsf{S}_{\mathcal{A}}}{\pi} \, \mathcal{F}_0^{(\mathcal{A})}$$

z	Asymptotic estimate I	Asymptotic estimate II	Prediction
$\mu/8$	$1. imes 10^9$	-2.0685×10^{-8}	-2.0618×10^{-8}
$\mu/7$	10000.	$-4.659137 imes 10^{-8}$	-4.658992×10^{-8}
$\mu/6$	0.01	$-1.163074023 imes 10^{-7}$	$-1.163074007 imes 10^{-7}$
$\mu/5$	$-3.335 imes 10^{-7}$	$-3.313309985143 \times 10^{-7}$	$-3.313309985104 \times 10^{-7}$
$\mu/3$	$-5.1510310321251 \times 10^{-6}$	$-5.151031032069825626 \times 10^{-6}$	$-5.151031032069825187 \times 10^{-6}$
$\mu/2$	-0.000038081205262381317350	-0.000038081205262381317350	-0.000038081205262381316984
$5\mu/6$	-0.000374000001694825755160	-0.000374000001694825755160	-0.000374000001694825754743
$23\mu/24$	-0.0004997585182539551567396	-0.0004997585182539551567396	-0.0004997585182539551566954

Checking theoretical one instanton correction against asymptotics

Table 10: Comparison, in the frame (X^0, X^1) , between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathsf{S}_{\mu}}{\pi}\mathcal{F}_0^{(\mu)}$ and the prediction, using $\mathsf{S}_{\mu} = 1$, for the example of the quintic.

Chec	zing theoretical one	e instanton correction	against asymptotics
	Ment point	cfld point	·
-	k		
z	Asymptotic estimate I	Asymptotic estimate II	Prediction
$\mu/8$	$1. \times 10^{9}$	$-2.0685 imes 10^{-8}$	-2.0618×10^{-8}
$\mu/7$	10000.	-4.659137×10^{-8}	$-4.658992 imes 10^{-8}$
$\mu/6$	0.01	$-1.163074023 imes 10^{-7}$	$-1.163074007 \times 10^{-7}$
$\mu/5$	$-3.335 imes10^{-7}$	$-3.313309985143 \times 10^{-7}$	$-3.313309985104\times10^{-7}$
$\mu/3$	$-5.1510310321251 imes 10^{-6}$	$-5.151031032069825626 \times 10^{-6}$	$-5.151031032069825187\times 10^{-6}$
$\mu/2$	-0.000038081205262381317350	-0.000038081205262381317350	-0.000038081205262381316984
$5 \mu/6$	-0.000374000001694825755160	-0.000374000001694825755160	-0.000374000001694825754743
23 <mark>µ/2</mark> 4	-0.0004997585182539551567396	-0.0004997585182539551567396	-0.0004997585182539551566954

Table 10: Comparison, in the frame (X^0, X^1) , between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathsf{S}_{\mu}}{\pi}\mathcal{F}_0^{(\mu)}$ and the prediction, using $\mathsf{S}_{\mu} = 1$, for the example of the quintic.

Chec	Ling theoretical one	e instanton correction	against asymptotics
-	Helt point	efld point	F. ^(v) evaluated in Mate frame for
z	Asymptotic estimate I	Asymptotic estimate II	A + Prediction
$\mu/8$	$1. \times 10^{9}$	-2.0685×10^{-8}	-2.0618×10^{-8}
$\mu/7\ \mu/6$	$\begin{array}{c} 10000.\\ 0.01 \end{array}$	-4.659137×10^{-8} $-1.163074023 \times 10^{-7}$	-4.658992×10^{-8} $-1.163074007 \times 10^{-7}$
$\mu/5$	-3.335×10^{-7}	$-3.313309985143 \times 10^{-7}$	$-3.313309985104 \times 10^{-7}$
$\mu/3 \ \mu/2$	-0.000038081205262381317350	$-5.151031032069825626 \times 10^{\circ}$ $-0.000038081205262381317350$	-0.000038081205262381316984
$5\mu/6$ $23\mu/24$	$-0.000374000001694825755160\\-0.0004997585182539551567396$	$-0.000374000001694825755160\\-0.0004997585182539551567396$	$-0.000374000001694825754743\\-0.0004997585182539551566954$

Table 10: Comparison, in the frame (X^0, X^1) , between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{S_{\mu}}{\pi} \mathcal{F}_0^{(\mu)}$ and the prediction, using $S_{\mu} = 1$, for the example of the quintic.

Chec	zing theoretical one	e instanton correction	against asymptotics
_	Hert point	efld point	F. ^(v) evaluated in Mate frame for
	Ju pu	A TT	A ~ P.
<i>z</i>	Asymptotic estimate 1	Asymptotic estimate II	Prediction
$\mu/8$	$1. imes 10^9$	$-2.0685 imes 10^{-8}$	$-2.0618 imes 10^{-8}$
$\mu/7$	10000.	-4.659137×10^{-8}	$-4.658992 imes 10^{-8}$
$\mu/6$	0.01	$-1.163074023 imes 10^{-7}$	$-1.163074007 imes 10^{-7}$
$\mu/5$	$-3.335 imes10^{-7}$	$-3.313309985143 imes 10^{-7}$	$-3.313309985104 imes 10^{-7}$
$\mu/3$	$-5.1510310321251 imes 10^{-6}$	$-5.151031032069825626 \times 10^{-6}$	$-5.151031032069825187 imes 10^{-6}$
$\mu/2$	-0.000038081205262381317350	-0.000038081205262381317350	-0.000038081205262381316984
$5\mu/6$	-0.000374000001694825755160	-0.000374000001694825755160	-0.000374000001694825754743
$23\mu/24$	-0.0004997585182539551567396	-0.0004997585182539551567396	-0.0004997585182539551566954

Table 10: Comparison, in the frame (X^0, X^1) , between the asymptotic estimate for the normalized genus 0 one-instanton amplitude $\frac{\mathsf{S}_{\mu}}{\pi}\mathcal{F}_0^{(\mu)}$ and the prediction, using $\mathsf{S}_{\mu} = 1$, for the example of the quintic.

contribution from de X° instanton sector subtracted

Conclusions

1. Instanton coefficients captured by holomosphic anomaly equations. 2. Intéger shift - in units of gs - of moduli features in exact solution for trans-scries convection 3. Integral structure · singularities in Bosel plane at integral periods · Stokes constants topological / enumerative invariants

Conclusions

1. Instanton coefficients captured by holomosphic anonaly equations. Why? 2. Integer shift - in units of gs - of moduli features in exact solution for trans-series correction Quantization of moduli 3. Integral structure space? · singularities in Bosel plane at integral periods D-branes? · Stokes constants topological / enumerative invasiants