Asymptotic Accelerated Expansion in String Theory?

José Calderón Infante

Based on 2209.11821 with Ignacio Ruiz and Irene Valenzuela Cosmology and High Energy Physics VII, Montpellier, 27/10/2023

PARTI Introduction and Motivation

An Universe in Accelerated Expansion

- Our Universe is expanding in an accelerated fashion
 - How to describe this within EFT?

- Important! We want this in an UV complete theory of Quantum Gravity
 - → Try in String Theory!

Summary: Asymptotic accelerated expansion — Without quantum corrections and going on forever

The Swampland

Is everything possible in Quantum Gravity

Swampland: [Vafa '05]

Apparently consistent effective field theories that cannot be completed to quantum gravity

Swampland program:

Find constraints that effective field theories must satisfy so that they do not belong to the Swampland

[van Beest, JC, Mirfendereski, Valenzuela '21]

Asymptotic Accelerated Expansion and the Swampland

- dS minima in String Theory?
- No fully-stablished example + candidates need quantum corrections (e.g. [KKLT '03])
- Several no-go theorems valid in various asymptotic limits (e.g. [Grimm, Li, Valenzuela '19])
 - Motivated some Swampland conjectures
- Refined dS conjecture: Forbids dS minima! [Ooguri, Palti, Shiu, Vafa '18] [Garg, Krishnan '18]
- Trans-Planckian Censorship Conjecture (TCC): dS vacua at best metastable! [Bedroya, Vafa '19] Short-lived

Dark energy (if possible) expected to be

Swampland question: Is asymptotic accelerated expansion possible in Quantum Gravity?

Dark Energy

David's talk!

not under parametric control not going on forever

Asymptotic Accelerated Expansion and the Swampland

Swampland question: Is asymptotic accelerated expansion possible in Quantum Gravity?

Quintessence

TCC:
$$c_{TCC} = -$$

(e.g. [Cicoli, Cunillera, Padilla, Pedro '22])

PART II Setup and Technical Tools

$$S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{1}{2} G_{I\bar{J}} \partial_{\mu} \Phi^{\bar{J}} \partial^{\mu} \Phi^{\bar{J}} - V(\Phi, \bar{\Phi}) \right\}$$

Field space metric $\Phi^I = a^I + is^I$ (Complex structure)+ Kähler

Turning off fluxes may take some terms to 0!

The Setup

F-theory on CY4 with fluxes $\rightarrow 4d \mathcal{N} = 1$ supergravity

[Grimm, Li, Valenzuela '18] Asymptotic limits in complex structure \rightarrow Machinery of Mixed Hodge Theory

Discrete data charaterizing asymptotic limit

$$\tilde{\sigma}_{I\bar{J}}d\Phi^{I}d\Phi^{\bar{J}} = \frac{\Delta d_{s}}{2s^{2}}\left(ds^{2} + da^{2}\right) + \frac{\Delta d_{u}}{2u^{2}}\left(du^{2} + db^{2}\right)$$

 $V \sim \sum_{(n,m) \in \mathscr{C}} \frac{\rho_{nm}}{2} s^{n-4} u^{m-n}$ [Grimm, Li, Valenzuela '19] Axion polynomials: Axions and fluxes

One asymptotic limit, many asymptotic potentials

Gradient Flows and Geodesics

Multi-field cosmology \rightarrow What trajectory in field space?

Intuition! Asymptotically, trajectories should be gradient flows of the potential!

$$G_{I\bar{J}}d\Phi^{I}d\Phi^{\bar{J}} = \frac{\Delta d_{s}}{2s^{2}} \left(ds^{2} + da^{2} \right) + \frac{\Delta d_{u}}{2u^{2}} \left(du^{2} + da^{2} \right)$$

$$V \sim \sum_{(n,m) \in \mathscr{C}} \left(\rho_{nm} \right)^{2} s^{n-4} u^{m-n}$$
Acts as a mass term
$$Acts as a mass term$$
Gradient flows constrained asymptotic trajectory of the second symptotic trajectory

[Hetz, Palma '16] [Achúcarro, Palma '19] Equations of motion: Gradient flow - Geodesic Need to check! e.g. [JC, Uranga, Valenzuela '20] $(+db^2) \rightarrow \text{Asymptotic geodesics: } a, b \rightarrow \text{const.}$ - Gradient flow such that $a, b \rightarrow const.$ m for axions! of the potential are good jectories for cosmology

... the only ones at late times?

Saxion Gradient Flows: Two Scenarios

Scenario (I)

Saxion Gradient Flows: Two Scenarios

Allows to violate previous bounds forbidding accelerated expansion!

• $4d \mathcal{N} = 1$ supergravity [Rudelius '21]

• Type IIB on CY3 orientifold with fluxes [Bastian, Grimm, van de Heisteeg '20]

Convex Hull dS Conjecture

Geometric reformulation of asymptotic dS conjecture

Idea: Encode info about V and G_{ij} in some vectors $g_{i}^{a} = -\delta^{ab} e_{b}^{i} \frac{\partial_{i} V_{l}}{V_{l}} \text{ dS ratios}$ Orthonormal basis for G_{ij} = minimum distance to the convex hull of dS ratios

$$V = \sum_{l} V_{l} \rightarrow \mu_{l}^{a}$$

Similar to Convex Hull versions of [Cheung, Remmen '14] Weak Gravity and Distance conjectures [JC, Uranga, Valenzuela '20] [Arkani-Hamed, Motl, Nicolis, Vafa '07] [Ooguri, Vafa '07]

Convex Hull dS Conjecture: Convex hull of all dS ratios $\overrightarrow{\mu}_l$ must lie outside de ball or radius c_d

Convex Hull dS Conjecture

Geometric reformulation of asymptotic dS conjecture

$$V = \sum_{l} V_{l} \rightarrow \mu_{l}^{a}$$

Idea: Encode info about V and G_{ij} in some vectors $Q_{j}^{a} = -\delta^{ab} e_{b}^{i} \frac{\partial_{i} V_{l}}{V_{l}}$ dS ratios Orthonormal basis for G_{ij} = minimum distance to the convex hull of dS ratios

Caveat: Relation to accelerated expansion restricted to gradient-flows=geodesics!

Until: [Shiu, Tonioni, Tran '23 (x2)] → Convex hull condition works beyond gradient flows! **Reason:** Non-gradient flows are less accelerated (in this setup) — Highly non-trivial to show!

Convex Hull dS Conjecture: Convex hull of all dS ratios $\overrightarrow{\mu}_l$ must lie outside de ball or radius c_d

Convex Hull dS Conjecture

Scenario (I)

A single term dominates asymptotically

Scenario (II)

Several terms dominate asymptotically

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{us} + \rho_{34} \frac{2}{us} + \rho_{36} \frac{2}{s} \frac{u^3}{s} + \rho_{52} \frac{2}{u^3} + \rho_{54} \frac{2}{u} + \rho_{56} \frac{2}{us} + \rho_{58} \frac{2}{u^3} + A_{44} - A_{\text{loc}}$$

Let us look at some of the axion polynomials

$$\rho_{52} = h_0 - h$$

$$\rho_{54} = h_1$$

$$\Rightarrow \Pi_{0,1} \rightarrow V_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{u s} + \rho_{34} \frac{2}{s} \frac{u}{s} + \rho_{36} \frac{2}{s} \frac{u^3}{s}$$

$$V \sim \left(\rho_{30} \frac{2}{u^3} + \rho_{32} \frac{2}{u} + \rho_{34} \frac{2}{u} + \rho_{36} \frac{2}{u^3} \right) \frac{1}{s}$$

$$\Rightarrow \Pi_{0,1} \rightarrow V_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

Each arrow leads to a more dominant term ... and to an axion polynomial of less degree!

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{us} + \rho_{34} \frac{2}{us} + \rho_{36} \frac{2}{s} \frac{u^3}{s} + \rho_{52} \frac{2}{u^3} + \rho_{54} \frac{2}{u} + \rho_{56} \frac{2}{us} + \rho_{58} \frac{2}{u^3} + A_{44} - A_{\text{loc}}$$

Encoded in an partially ordered chain

$$\Rightarrow \mathbb{II}_{0,1} \to \mathbb{V}_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{u^3} \frac{1}{u^5} + \rho_{34} \frac{2}{u^5} \frac{u}{s} + \rho_{36} \frac{2}{u^3} \frac{u^3}{s} + \rho_{52} \frac{2}{u^3} \frac{s}{u^3} + \rho_{54} \frac{2}{u} \frac{s}{u^4} + \rho_{56} \frac{2}{u^5} \frac{u^3}{u^5} + \rho_{58} \frac{2}{u^3} \frac{u^3}{s} + A_{44} - A_{14} + A_{14} +$$

$$\Rightarrow \mathbb{II}_{0,1} \to \mathbb{V}_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

Encoded in an partially ordered chain

$$\xrightarrow{\rho_{34}} \xrightarrow{\rho_{36}} \sim (f_0 \pm h_3 c)^2$$

$$\xrightarrow{\rho_{36}} \sim (h_2 - h_3 b)^2$$

Leading term

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{u^3} \frac{1}{u^5} + \rho_{34} \frac{2}{u^5} \frac{u}{s} + \rho_{36} \frac{2}{u^3} \frac{u^3}{s} + \rho_{52} \frac{2}{u^3} \frac{s}{u^3} + \rho_{54} \frac{2}{u^5} \frac{s}{u^4} + \rho_{56} \frac{2}{u^5} \frac{u^3}{s} + \rho_{58} \frac{2}{u^3} \frac{u^3}{s} + A_{44} - A_{14} + A_{14} +$$

Help us classify which terms can dominate and which are the relevant fluxes

$$\Rightarrow \mathbb{II}_{0,1} \to \mathbb{V}_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

Encoded in an partially ordered chain

In Mixed Hodge Theory language

$$V \sim \rho_{30} \frac{2}{u^3 s} + \rho_{32} \frac{2}{u s} + \rho_{34} \frac{2}{s} \frac{u}{s} + \rho_{36} \frac{2}{s} \frac{u^3}{s}$$

Gradient flow with $s, u \rightarrow \infty$ not p

$$\Rightarrow \Pi_{0,1} \rightarrow \mathsf{V}_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

Encoded in an partially ordered chain

$$\rightarrow \rho_{34} \rightarrow \rho_{36}$$

possible if
$$V \to \infty$$
 \longrightarrow Set $h_3 = h_2 = 0$

In Mixed Hodge Theory language

Potential

$$\frac{A_{30}}{su^3} + \frac{A_{32}}{us} + A_{34}\frac{u}{s} + A_{36}\frac{u^3}{s} + A_{52}$$

$$\frac{A_{30}}{su^3} + \frac{A_{32}}{us} + A_{34}\frac{u}{s} + A_{36}\frac{u^3}{s} + A_{34}\frac{u}{s} + A_{36}\frac{u^3}{s} + A_{34}\frac{u}{s} + A_{36}\frac{u^3}{su^3} + A_{34}\frac{u}{s} + A_{36}\frac{A_{30}}{su^3} + A_{32}\frac{u}{us} + A_{34}\frac{u}{s} + A_{30}\frac{A_{30}}{su^3} + \frac{A_{32}}{us} + A_{34}\frac{u}{s} + A_{30}\frac{A_{30}}{su^3} + \frac{A_{32}}{us} + A_{52}\frac{s}{u} +$$

$$\Rightarrow \mathbb{II}_{0,1} \to \mathbb{V}_{2,2} \longrightarrow \begin{cases} (\Delta d_s, \Delta d_u) = (1,3) \\ (n,m) = \{\dots\} \end{cases}$$

			_
al	$\vec{\beta}$	$\gamma_{ec{f}}$	
$_{52\frac{s}{u^3}} + A_{54\frac{s}{u}} + A_{44} - A_{\text{loc}}$	(-2,-1)	-	
$+A_{52}\frac{s}{u^3} + A_{44} - A_{\text{loc}}$	(3,1) *	$2\sqrt{\frac{2}{3}}$	
$+A_{54}\frac{s}{u} + A_{44} - A_{loc}$	$(1,1) \star$	$\sqrt{2}$	
$\frac{u}{s} + A_{36} \frac{u^3}{s}$	(1,0)	$\sqrt{2}$	
$\frac{u}{s} + A_{52} \frac{s}{u^3}$	(2,1)	$\sqrt{\frac{2}{7}}$	Check Table 2
$\frac{s}{u^3} + A_{54} \frac{s}{u}$	(-3,1)	-	of the paper
$A_{52}\frac{s}{u^3}$	(1,1)	$\sqrt{2}$	
$A_{34}\frac{u}{s}$	(1,0)	$\sqrt{2}$	
$\frac{32}{s}$	(3,1)	$2\sqrt{\frac{2}{3}}$	
$2\frac{s}{u^3}$	(-1,1)	-	
	(1,1)	$2\sqrt{2}$	

PART III **Results and Discussion**

Asymptotic Accelerated Expansion in String Theory?

We find two potential examples of asymptotic accelerated expansion!

Type IIB at weak coupling and large complex structure:

$$V \sim f_2^2 \frac{u}{s} + h_0^2 \frac{s}{u^3} + \cdots \rightarrow \gamma = \sqrt{\frac{2}{7}} < c_{TCC}$$

$$V \sim A_{42} \frac{1}{u^2} + A_{24} \frac{u^2}{s^2} + A_{24$$

Caveat: Have to stabilize Kähler moduli, otherwise they contribute to γ

→ Need to use quantum corrections! And probably metastable!

A not weakly-coupled F-theory limit:

Both realize Scenario (II)

 \rightarrow Required for phenomenologically viable quintessence model (5th forces)

Caveat avoided in Type IIA... but we found no potential example there

Asymptotic Accelerated Expansion in String Theory?

- [Cremonini, Gonzalo, Rajaguru, Tang, Wrase '23]
- No asymptotic accelerated expansion in a model without Kähler moduli
 - [Hebecker, Schreyen, Venken '23]
- Suggest: Asymptotic accelerated expansion \leftrightarrow dS in more dimensions!
 - If one is hard, the other too!
 - [Andriot, Tsimpis, Wrase '23]
- Asymptotic accelerated expansion for open universes in String Theory
 - ... without cosmological horizon!
- Asymptotic accelerated expansion ok, but QG abhors cosmological horizons

Bonus track: Recent exciting results!

Future Directions and Conclusions

My conclusions/feeling

- Accelerated expansion in String Theory will require knowledge about quantum corrections
 - Accelerated expansion in quantum gravity cannot last forever
 - Absence of asymptotic observables, holography? [Rudelius '21] [Bedroya, 23]
 - QG abhors cosmological horizons? [Andriot, Tsimpis, Wrase '23]

Prediction for the future or our own Universe

Future directions

Beyond asymptotic regime: independent approach Quantum corrections, Kähler stabilization

Technically challenging, and thus exciting

Chank you for your attention!